
CS144: Introduction to Computer Networking Fall 2020

Lab 0: networking warmup

Due: Tuesday, September 22, 5 p.m. Stanford time
Lab session: September 16, 6–9 p.m. Stanford time

Welcome to CS144: Introduction to Computer Networking. In this warmup lab, you will
set up an installation of Linux on your computer, learn how to perform some tasks over the
Internet by hand, write a small program in C++ that fetches a Web page over the Internet,
and implement (in memory) one of the key abstractions of networking: a reliable stream of
bytes between a writer and a reader. We expect this warmup to take you between 2 and 6
hours to complete (future labs will take more of your time). Three quick points about these
lab assignments:

• It’s a good idea to skim the whole lab before diving in!

• Over the course of the class, you’ll be building up your own implementation of a
significant portion of the Internet—a router, a network interface, and the TCP protocol
(which transforms unreliable datagrams into a reliable byte stream). Most of the
labs will build on work you have done previously, i.e., you are building up your own
implementation gradually over the course of the quarter, and you’ll continue to use
your work in future labs. This makes it hard to “skip” a lab.

• The lab assignments aren’t “specifications,” meaning they’re not intended to be con-
sumed in a one-way fashion. They’re written closer to the level of detail that a software
engineer will get from a boss or client. We expect that you’ll benefit from attending
the lab sessions and asking clarifying questions if you find something to be ambiguous
and you think the answer matters. (If you think something might not be fully specified,
sometimes the truth is that it doesn’t matter—you could try one approach or the other
and see what happens.)

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: You may not show your code to anyone else, look at anyone else’s
code, or look at solutions from previous years. You may discuss the assignments with other
students, but do not copy anybody’s code. If you discuss an assignment with another student,
please name them in a comment in your submitted source code. Please refer to the course
administrative handout for more details, and ask on Piazza if anything is unclear.

Piazza: Please feel free to ask questions on Piazza, but please don’t post any source code.

CS144: Introduction to Computer Networking Fall 2020

1 Set up GNU/Linux on your computer

CS144’s assignments require the GNU/Linux operating system and a recent C++ compiler
that supports the C++ 2017 standard. Please choose one of these three options:

1. Recommended: Install the CS144 VirtualBox virtual-machine image (instructions at
https://stanford.edu/class/cs144/vm howto/vm-howto-image.html).

2. Run Ubuntu version 18.04 LTS, then run our setup script. You can do this on your actual
computer, inside VirtualBox, or on EC2 or another virtual machine (a step-by-step
guide is at https://stanford.edu/class/cs144/vm howto/vm-howto-iso.html).

3. Use another GNU/Linux distribution, but be aware that you may hit roadblocks along
the way and will need to be comfortable debugging them. Your code will be tested
on Ubuntu 18.04 LTS with g++ 8.2.0 and must compile and run properly under those
conditions. Tips at https://stanford.edu/class/cs144/vm howto/vm-howto-byo.html.

2 Networking by hand

Let’s get started with using the network. You are going to do two tasks by hand: retrieving a
Web page (just like a Web browser) and sending an email message (like an email client). Both
of these tasks rely on a networking abstraction called a reliable bidirectional byte stream: you’ll
type a sequence of bytes into the terminal, and the same sequence of bytes will eventually
be delivered, in the same order, to a program running on another computer (a server). The
server responds with its own sequence of bytes, delivered back to your terminal.

2.1 Fetch a Web page

1. In a Web browser, visit http://cs144.keithw.org/hello and observe the result.

2. Now, you’ll do the same thing the browser does, by hand.

(a) On your VM, run telnet cs144.keithw.org http . This tells the telnet

program to open a reliable byte stream between your computer and another
computer (named cs144.keithw.org), and with a particular service running on
that computer: the “http” service, for the Hyper-Text Transfer Protocol, used by
the World Wide Web.1

If your computer has been set up properly and is on the Internet, you will see:

user@computer:~$ telnet cs144.keithw.org http

Trying 104.196.238.229...

Connected to cs144.keithw.org.

Escape character is '^]'.

1The computer’s name has a numerical equivalent (104.196.238.229, an Internet Protocol v4 address),
and so does the service’s name (80, a TCP port number). We’ll talk more about these later.

https://stanford.edu/class/cs144/vm_howto/vm-howto-image.html
https://stanford.edu/class/cs144/vm_howto/vm-howto-iso.html
https://stanford.edu/class/cs144/vm_howto/vm-howto-byo.html
http://cs144.keithw.org/hello

CS144: Introduction to Computer Networking Fall 2020

If you need to quit, hold down ctrl and press] , and then type close .

(b) Type GET /hello HTTP/1.1 . This tells the server the path part of the URL.

(The part starting with the third slash.)

(c) Type Host: cs144.keithw.org . This tells the server the host part of the

URL. (The part between http:// and the third slash.)

(d) Type Connection: close . This tells the server that you are finished

making requests, and it should close the connection as soon as it finishes replying.

(e) Hit the Enter key one more time: . This sends an empty line and tells the

server that you are done with your HTTP request.

(f) If all went well, you will see the same response that your browser saw, preceded
by HTTP headers that tell the browser how to interpret the response.

3. Assignment: Now that you know how to fetch a Web page by hand, show us you
can! Use the above technique to fetch the URL http://cs144.keithw.org/lab0/sunetid ,
replacing sunetid with your own primary SUNet ID. You will receive a secret code in
the X-Your-Code-Is: header. Save your SUNet ID and the code for inclusion in your
writeup.

2.2 Send yourself an email

Now that you know how to fetch a Web page, it’s time to send an email message, again using
a reliable byte stream to a service running on another computer.

1. Log in to cardinal.stanford.edu (to make sure you are on Stanford’s network), then
run telnet 148.163.153.234 smtp .2 The “smtp” service refers to the Simple Mail
Transfer Protocol, used to send email messages. If all goes well, you will see:

user@computer:~$ telnet 148.163.153.234 smtp

Trying 148.163.153.234...

Connected to 148.163.153.234.

Escape character is '^]'.

220 mx0b-00000d03.pphosted.com ESMTP mfa-m0214089

2. First step: identify your computer to the email server. Type

HELO mycomputer.stanford.edu . Wait to see something like “250 ... Hello

cardinal3.stanford.edu [171.67.24.75], pleased to meet you”.

2These instructions might also work from outside Stanford’s network, but we can’t guarantee it.

CS144: Introduction to Computer Networking Fall 2020

3. Next step: who is sending the email? Type MAIL FROM: sunetid @stanford.edu .

Replace sunetid with your SUNet ID.3 If all goes well, you will see “250 2.1.0 Sender

ok”.

4. Next: who is the recipient? For starters, try sending an email message to yourself. Type

RCPT TO: sunetid @stanford.edu . Replace sunetid with your own SUNet ID.

If all goes well, you will see “250 2.1.5 Recipient ok.”

5. It’s time to upload the email message itself. Type DATA to tell the server you’re

ready to start. If all goes well, you will see “354 End data with <CR><LF>.<CR><LF>”.

6. Now you are typing an email message to yourself. First, start by typing the headers
that you will see in your email client. Leave a blank line at the end of the headers.

354 End data with <CR><LF>.<CR><LF>

From: sunetid@stanford.edu
To: sunetid@stanford.edu
Subject: Hello from CS144 Lab 0!

7. Type the body of the email message—anything you like. When finished, end with a dot

on a line by itself: . . Expect to see something like: “250 2.0.0 33h24dpdsr-1

Message accepted for delivery”.

8. Type QUIT to end the conversation with the email server. Check your inbox and

spam folder to make sure you got the email.

9. Assignment: Now that you know how to send an email by hand to yourself, try
sending one to a friend or lab partner and make sure they get it. Finally, show us
you can send one to us. Use the above technique to send an email, from yourself, to
cs144grader@gmail.com.

2.3 Listening and connecting

You’ve seen what you can do with telnet: a client program that makes outgoing connections
to programs running on other computers. Now it’s time to experiment with being a simple
server: the kind of program that waits around for clients to connect to it.

1. In one terminal window, run netcat -v -l -p 9090 on your VM. You should see:

3Yes, it’s possible to give a phony “from” address. Electronic mail is a bit like real mail from the postal
service, in that the accuracy of the return address is (mostly) on the honor system. You can write anything
you like as the return address on a postcard, and the same is largely true of email. Please do not abuse
this—seriously. With engineering knowledge comes responsibility! Sending email with a phony “from” address
is commonly done by spammers and criminals so they can pretend to be somebody else.

CS144: Introduction to Computer Networking Fall 2020

user@computer:~$ netcat -v -l -p 9090

Listening on [0.0.0.0] (family 0, port 9090)

2. Leave netcat running. In another terminal window, run telnet localhost 9090

(also on your VM).

3. If all goes well, the netcat will have printed something like “Connection from

localhost 53500 received!”.

4. Now try typing in either terminal window—the netcat (server) or the telnet (client).
Notice that anything you type in one window appears in the other, and vice versa.
You’ll have to hit for bytes to be transfered.

5. In the netcat window, quit the program by typing ctrl -C . Notice that the telnet

program immediately quits as well.

3 Writing a network program using an OS stream socket

In the next part of this warmup lab, you will write a short program that fetches a Web page
over the Internet. You will make use of a feature provided by the Linux kernel, and by most
other operating systems: the ability to create a reliable bidirectional byte stream between two
programs, one running on your computer, and the other on a different computer across the
Internet (e.g., a Web server such as Apache or nginx, or the netcat program).

This feature is known as a stream socket. To your program and to the Web server, the socket
looks like an ordinary file descriptor (similar to a file on disk, or to the stdin or stdout

I/O streams). When two stream sockets are connected, any bytes written to one socket will
eventually come out in the same order from the other socket on the other computer.

In reality, however, the Internet doesn’t provide a service of reliable byte-streams. Instead,
the only thing the Internet really does is to give its “best effort” to deliver short pieces of
data, called Internet datagrams, to their destination. Each datagram contains some metadata
(headers) that specifies things like the source and destination addresses—what computer it
came from, and what computer it’s headed towards—as well as some payload data (up to
about 1,500 bytes) to be delivered to the destination computer.

Although the network tries to deliver every datagram, in practice datagrams can be (1) lost,
(2) delivered out of order, (3) delivered with the contents altered, or even (4) duplicated and
delivered more than once. It’s normally the job of the operating systems on either end of
the connection to turn “best-effort datagrams” (the abstraction the Internet provides) into
“reliable byte streams” (the abstraction that applications usually want).

The two computers have to cooperate to make sure that each byte in the stream eventually
gets delivered, in its proper place in line, to the stream socket on the other side. They also
have to tell each other how much data they are prepared to accept from the other computer,

CS144: Introduction to Computer Networking Fall 2020

and make sure not to send more than the other side is willing to accept. All this is done
using an agreed-upon scheme that was set down in 1981, called the Transmission Control
Protocol, or TCP.

In this lab, you will simply use the operating system’s pre-existing support for the Transmission
Control Protocol. You’ll write a program called “webget” that creates a TCP stream socket,
connects to a Web server, and fetches a page—much as you did earlier in this lab. In future
labs, you’ll implement the other side of this abstraction, by implementing the Transmission
Control Protocol yourself to create a reliable byte-stream out of not-so-reliable datagrams.

3.1 Let’s get started—fetching and building the starter code

1. The lab assignments will use a starter codebase called “Sponge.” On your VM, run
git clone https://github.com/cs144/sponge to fetch the source code for the lab.

2. Optional: Feel free to backup your repository to a private GitHub/GitLab/Bitbucket

repository (e.g., using the instructions at https://stackoverflow.com/questions/10065526/

github-how-to-make-a-fork-of-public-repository-private), but please make absolutely sure

that your work remains private.

3. Enter the Lab 0 directory: cd sponge

4. Create a directory to compile the lab software: mkdir build

5. Enter the build directory: cd build

6. Set up the build system: cmake ..

7. Compile the source code: make (you can run make -j4 to use four processors).

8. Outside the build directory, open and start editing the writeups/lab0.md file. This
is the template for your lab writeup and will be included in your submission.

3.2 Modern C++: mostly safe but still fast and low-level

The lab assignments will be done in a contemporary C++ style that uses recent (2011)
features to program as safely as possible. This might be different from how you have been
asked to write C++ in the past. For references to this style, please see the C++ Core
Guidelines (http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines).

The basic idea is to make sure that every object is designed to have the smallest possible
public interface, has a lot of internal safety checks and is hard to use improperly, and knows
how to clean up after itself. We want to avoid “paired” operations (e.g. malloc/free, or
new/delete), where it might be possible for the second half of the pair not to happen (e.g., if a

https://stackoverflow.com/questions/10065526/github-how-to-make-a-fork-of-public-repository-private
https://stackoverflow.com/questions/10065526/github-how-to-make-a-fork-of-public-repository-private
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

CS144: Introduction to Computer Networking Fall 2020

function returns early or throws an exception). Instead, operations happen in the constructor
to an object, and the opposite operation happens in the destructor. This style is called
“Resource acquisition is initialization,” or RAII.

In particular, we would like you to:

• Use the language documentation at https://en.cppreference.com as a resource.

• Never use malloc() or free().

• Never use new or delete.

• Essentially never use raw pointers (*), and use “smart” pointers (unique ptr or
shared ptr) only when necessary. (You will not need to use these in CS144.)

• Avoid templates, threads, locks, and virtual functions. (You will not need to use these
in CS144.)

• Avoid C-style strings (char *str) or string functions (strlen(), strcpy()). These
are pretty error-prone. Use a std::string instead.

• Never use C-style casts (e.g., (FILE *)x). Use a C++ static cast if you have to (you
generally will not need this in CS144).

• Prefer passing function arguments by const reference (e.g.: const Address & address).

• Make every variable const unless it needs to be mutated.

• Make every method const unless it needs to mutate the object.

• Avoid global variables, and give every variable the smallest scope possible.

• Before handing in an assignment, please run make format to normalize the coding
style.

On using Git: The labs are distributed as Git (version control) repositories—a way of
documenting changes, checkpointing versions to help with debugging, and tracking the
provenance of source code. Please make frequent small commits as you work, and
use commit messages that identify what changed and why. The Platonic ideal is
that each commit should compile and should move steadily towards more and more tests
passing. Making small “semantic” commits helps with debugging (it’s much easier to debug if
each commit compiles and the message describes one clear thing that the commit does) and
protects you against claims of cheating by documenting your steady progress over time—and
it’s a useful skill that will help in any career that includes software development. The graders
will be reading your commit messages to understand how you developed your solutions to the
labs. If you haven’t learned how to use Git, please do ask for help at the CS144 office hours
or consult a tutorial (e.g., https://guides.github.com/introduction/git-handbook). Finally,
you are welcome to store your code in a private repository on GitHub, GitLab, Bitbucket,
etc., but please make sure your code is not publicly accessible.

https://en.cppreference.com
https://guides.github.com/introduction/git-handbook

CS144: Introduction to Computer Networking Fall 2020

3.3 Reading the Sponge documentation

To support this style of programming, Sponge’s classes wrap operating-system functions
(which can be called from C) in “modern” C++.

1. Using a Web browser, read over the documentation to the starter code at
https://cs144.github.io/doc/lab0.

2. Pay particular attention to the documentation for the FileDescriptor, Socket,
TCPSocket, and Address classes. (Note that a Socket is a type of FileDescriptor,
and a TCPSocket is a type of Socket.)

3. Now, find and read over the header files that describe the interface to these classes in
the libsponge/util directory: file descriptor.hh, socket.hh, and address.hh.

3.4 Writing webget

It’s time to implement webget, a program to fetch Web pages over the Internet using the
operating system’s TCP support and stream-socket abstraction—just like you did by hand
earlier in this lab.

1. From the build directory, open the file ../apps/webget.cc in a text editor or IDE.

2. In the get URL function, find the comment starting “// Your code here.”

3. Implement the simple Web client as described in this file, using the format of an HTTP
(Web) request that you used earlier. Use the TCPSocket and Address classes.

4. Hints:

• Please note that in HTTP, each line must be ended with “\r\n” (it’s not sufficient
to use just “\n” or endl).

• Don’t forget to include the “Connection: close” line in your client’s request. This
tells the server that it shouldn’t wait around for your client to send any more
requests after this one. Instead, the server will send one reply and then will
immediately end its outgoing bytestream (the one from the server’s socket to your
socket). You’ll discover that your incoming byte stream has ended because your
socket will reach “EOF” (end of file) when you have read the entire byte stream
coming from the server. That’s how your client will know that the server has
finished its reply.

• Make sure to read and print all the output from the server until the socket reaches
“EOF” (end of file)—a single call to read is not enough.

• We expect you’ll need to write about ten lines of code.

5. Compile your program by running make . If you see an error message, you will need to
fix it before continuing.

https://cs144.github.io/doc/lab0
https://cs144.github.io/doc/lab0/class_file_descriptor.html
https://cs144.github.io/doc/lab0/class_socket.html
https://cs144.github.io/doc/lab0/class_t_c_p_socket.html
https://cs144.github.io/doc/lab0/class_address.html

CS144: Introduction to Computer Networking Fall 2020

6. Test your program by running ./apps/webget cs144.keithw.org /hello . How

does this compare to what you see when visiting http://cs144.keithw.org/hello in a
Web browser? How does it compare to the results from Section 2.1? Feel free to
experiment—test it with any http URL you like!

7. When it seems to be working properly, run make check webget to run the automated
test. Before implementing the get URL function, you should expect to see the
following:

1/1 Test #25: lab0_webget***Failed 0.00 sec

Function called: get_URL(cs144.keithw.org, /hasher/xyzzy).

Warning: get_URL() has not been implemented yet.

ERROR: webget returned output that did not match the test's expectations

After completing the assignment, you will see:

4/4 Test #4: lab0_webget Passed 0.14 sec

100% tests passed, 0 tests failed out of 4

8. The graders will run your webget program with a different hostname and path than
make check runs—so make sure it doesn’t only work with the hostname and path used
by make check.

4 An in-memory reliable byte stream

By now, you’ve seen how the abstraction of a reliable byte stream can be useful in com-
municating across the Internet, even though the Internet itself only provides the service of
“best-effort” (unreliable) datagrams.

To finish off this week’s lab, you will implement, in memory on a single computer, an object
that provides this abstraction. (You may have done something similar in CS 110.) Bytes
are written on the “input” side and can be read, in the same sequence, from the “output”
side. The byte stream is finite: the writer can end the input, and then no more bytes can be
written. When the reader has read to the end of the stream, it will reach “EOF” (end of file)
and no more bytes can be read.

Your byte stream will also be flow-controlled to limit its memory consumption at any given
time. The object is initialized with a particular “capacity”: the maximum number of bytes
it’s willing to store in its own memory at any given point. The byte stream will limit the
writer in how much it can write at any given moment, to make sure that the stream doesn’t
exceed its storage capacity. As the reader reads bytes and drains them from the stream, the
writer is allowed to write more. Your byte stream is for use in a single thread—you don’t
have to worry about concurrent writers/readers, locking, or race conditions.

http://cs144.keithw.org/hello

CS144: Introduction to Computer Networking Fall 2020

To be clear: the byte stream is finite, but it can be almost arbitrarily long4 before the writer
ends the input and finishes the stream. Your implementation must be able to handle streams
that are much longer than the capacity. The capacity limits the number of bytes that are
held in memory (written but not yet read) at a given point, but does not limit the length
of the stream. An object with a capacity of only one byte could still carry a stream that is
terabytes and terabytes long, as long as the writer keeps writing one byte at a time and the
reader reads each byte before the writer is allowed to write the next byte.

Here’s what the interface looks like for the writer:

// Write a string of bytes into the stream. Write as many

// as will fit, and return the number of bytes written.

size_t write(const std::string &data);

// Returns the number of additional bytes that the stream has space for

size_t remaining_capacity() const;

// Signal that the byte stream has reached its ending

void end_input();

// Indicate that the stream suffered an error

void set_error();

And here is the interface for the reader:

// Peek at next "len" bytes of the stream

std::string peek_output(const size_t len) const;

// Remove ``len'' bytes from the buffer

void pop_output(const size_t len);

// Read (i.e., copy and then pop) the next "len" bytes of the stream

std::string read(const size_t len);

bool input_ended() const; // `true` if the stream input has ended

bool eof() const; // `true` if the output has reached the ending

bool error() const; // `true` if the stream has suffered an error

size_t buffer_size() const; // the maximum amount that can currently be peeked/read

bool buffer_empty() const; // `true` if the buffer is empty

size_t bytes_written() const; // Total number of bytes written

size_t bytes_read() const; // Total number of bytes popped

Please open the libsponge/byte stream.hh and libsponge/byte stream.cc files, and

4At least up to 264 bytes, which in this class we will regard as essentially arbitrarily long

CS144: Introduction to Computer Networking Fall 2020

implement an object that provides this interface. As you develop your byte stream imple-
mentation, you can run the automated tests with make check lab0 .

What’s next? Over the next four weeks, you’ll implement a system to provide the same inter-
face, no longer in memory, but instead over an unreliable network. This is the Transmission
Control Protocol.

5 Submit

1. In your submission, please only make changes to webget.cc and the source code in the
top level of libsponge (byte stream.hh and byte stream.cc). Please don’t modify
any of the tests or the helpers in libsponge/util.

2. Before handing in any assignment, please run these in order:

(a) make format (to normalize the coding style)

(b) make (to make sure the code compiles)

(c) make check lab0 (to make sure the automated tests pass)

3. Finish editing writeups/lab0.md, filling in the number of hours this assignment took
you and any other comments.

4. When ready to submit, please follow the instructions at https://cs144.github.io/submit.
Please make sure you have committed everything you intend before submit-
ting. We can only grade your code if it has been committed.

5. Please let the course staff know ASAP of any problems at the Wednesday-evening lab
session, or by posting a question on Piazza. Good luck and welcome to CS144!

https://cs144.github.io/submit

	Collaboration Policy
	Set up GNU/Linux on your computer
	Networking by hand
	Fetch a Web page
	Send yourself an email
	Listening and connecting

	Writing a network program using an OS stream socket
	Let's get started—fetching and building the starter code
	Modern C++: mostly safe but still fast and low-level
	Reading the Sponge documentation
	Writing webget

	An in-memory reliable byte stream
	Submit

