(CS144: Introduction to Computer Networking Fall 2020

Lab 1: stitching substrings into a byte stream

Due: Tuesday, October 6, 5 p.m. Stanford time (5% bonus if submitted by Tuesday, Sept. 29)
Lab sessions: Wednesday, Sept. 23 & 30, 6-9 p.m. Stanford time

N.B. This is a two-part lab assignment. Labs 1 € 2 are both due on October 6, but there is a
bonus for handing in Lab 1 a week early.

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: You may not show your code to anyone else, look at anyone else’s
code, or look at solutions from previous years. You may discuss the assignments with other
students, but do not copy anybody’s code. If you discuss an assignment with another student,
please name them in a comment in your submitted source code. Please refer to the course
administrative handout for more details, and ask on Piazza if anything is unclear.

Piazza: Please feel free to ask questions on Piazza, but please don’t post any source code.

1 Overview

In Lab 0, you used an Internet stream socket to fetch information from a website and
send an email message, using Linux’s built-in implementation of the Transmission Control
Protocol (TCP). This TCP implementation managed to produce a pair of reliable in-order
byte streams (one from you to the server, and one in the opposite direction), even though
the underlying network only delivers “best-effort” datagrams. By this we mean: short
packets of data that can be lost, reordered, altered, or duplicated. You also implemented the
byte-stream abstraction yourself, in memory within one computer. Over the next four weeks,
you’ll implement TCP, to provide the byte-stream abstraction between a pair of computers
separated by an unreliable datagram network.

*Why am I doing this? Providing a service or an abstraction on top of a different
less-reliable service accounts for many of the interesting problems in networking. Over
the last 40 years, researchers and practitioners have figured out how to convey all kinds
of things—messaging and e-mail, hyperlinked documents, search engines, sound and
video, virtual worlds, collaborative file sharing, digital currencies—over the Internet.
TCP’s own role, providing a pair of reliable byte streams using unreliable datagrams, is
one of the classic examples of this. A reasonable view has it that TCP implementations
count as the most widely used nontrivial computer programs on the planet.

(CS144: Introduction to Computer Networking Fall 2020
CS144TCPSocket
IPv4Datagram
from Internet ----| e > (with TCPSegment as payload) """ > TCPSeg:nent
TCPConnection | e
egment._received TCPSegnen““ t
; - ““Y-'(. ! | TCPReceiver |
TCPSender 2 e segment_received(TCPSegment)
ack_received(ackno, window_size) StreamReassembler
ByteStream ByteStream
(“outbound”) (“inbound”)
writes L Lo S (| B L reads
(to the socket) (from the socket)
) TCPSegment (ackno, 4
(seqno, SYN, payload, FIN) = window_size)
“reseenes > TCPSegment ... IPv4Datagram .uceeesersssssedeesans > to Internet

(+ add port numbers)

(with TCPSegment as payload)

Figure 1: The arrangement of modules and dataflow in your TCP implementation. The
ByteStream was Lab 0. The job of TCP is to convey two ByteStreams (one in each direction)
over an unreliable datagram network, so that bytes written to the socket on one side of
the connection emerge as bytes that can be read at the peer, and vice versa. Lab 1 is the
StreamReassembler, and in Labs 2, 3, and 4 you’ll implement the TCPReceiver, TCPSender,
and then the TCPConnection to tie it all together.

(CS144: Introduction to Computer Networking Fall 2020

The lab assignments will ask you to build up a TCP implementation in a modular way.
Remember the ByteStream you just implemented in Lab 07 In the next four labs, you’ll end
up convey two of them across the network: an “outbound” ByteStream, for data that a local
application writes to a socket and that your TCP will send to the peer, and an “inbound”
ByteStream for data coming from the peer that will be read by a local application. Figure 1
shows how the pieces fit together.

1. In Lab 1, you'll implement a stream reassembler—a module that stitches small pieces
of the byte stream (known as substrings, or segments) back into a contiguous stream
of bytes in the correct sequence.

2. In Lab 2, you’ll implement the part of TCP that handles the inbound byte-stream: the
TCPReceiver. This involves thinking about how TCP will represent each byte’s place
in the stream—known as a “sequence number.” The TCPReceiver is responsible for
telling the sender (a) how much of the inbound byte stream it’s been able to assemble
successfully (this is called “acknowledgment”) and (b) how many more bytes the sender
is allowed to send right now (“flow control”).

3. In Lab 3, you’ll implement the part of TCP that handles the outbound byte-stream: the
TCPSender. How should the sender react when it suspects that a segment it transmitted
was lost along the way and never made it to the receiver? When should it try again
and re-transmit a lost segment?

4. In Lab 4, you’ll combine your work from the previous to labs to create a working
TCP implementation: a TCPConnection that contains a TCPSender and TCPReceiver.
You'll use this to talk to real servers around the world.

2 Getting started

Your implementation of TCP will use the same Sponge library that you used in Lab 0, with
additional classes and tests. To get started:

1. Make sure you have committed all your solutions to Lab 0. Please don’t modify any
files outside the top level of the 1libsponge directory, or webget.cc. You may have
trouble merging the Lab 1 starter code otherwise.

2. While inside the repository for the lab assignments, run to retrieve the

most recent version of the lab assignments.

3. Download the starter code for Lab 1 by running ’ git merge origin/labl-startercode |

4. Within your build directory, compile the source code: |make| (you can run, e.g.,
to use four processors when compiling).

5. Outside the build directory, open and start editing the writeups/labl.md file. This
is the template for your lab writeup and will be included in your submission.

(CS144: Introduction to Computer Networking Fall 2020

3 Putting substrings in sequence

In this and the next lab, you will implement a TCP receiver: the module that receives
datagrams and turns them into a reliable byte stream to be read from the socket by the
application—just as your webget program read the byte stream from the webserver in Lab 0.

The TCP sender is dividing its byte stream up into short segments (substrings no more than
about 1,460 bytes apiece) so that they each fit inside a datagram. But the network might
reorder these datagrams, or drop them, or deliver them more than once. The receiver must
reassemble the segments into the contiguous stream of bytes that they started out as.

In this lab you’ll write the data structure that will be responsible for this reassembly: a
StreamReassembler. It will receive substrings, consisting of a string of bytes, and the index
of the first byte of that string within the larger stream. Each byte of the stream has
its own unique index, starting from zero and counting upwards. The StreamReassembler
will own a ByteStream for the output: as soon as the reassembler knows the next byte of
the stream, it will write it into the ByteStream. The owner can access and read from the
ByteStream whenever it wants.

Here’s what the interface looks like:

// Construct a ~StreamReassembler™ that will store up to “capacity bytes.
StreamReassembler(const size_t capacity);

// Receive a substring and write any newly contiguous bytes into the stream,

// while staying within the memory limits of the “capacity . Bytes that would

// exceed the capacity are silently discarded.

/7

// “data’: the substring

// “index” indicates the indexr (place in sequence) of the first byte in “data”

// “eof : the last byte of this substring will be the last byte in the entire stream
void push_substring(const string &data, const uint64_t index, const bool eof);

// Access the reassembled ByteStream (your code from Lab 0)
ByteStream &stream_out();

// The number of bytes in the substrings stored but not yet reassembled
size_t unassembled_bytes() const;

// Is the internal state empty (other than the output stream)?
bool empty() const;

*Why am I doing this? TCP robustness against reordering and duplication comes
from its ability to stitch arbitrary excerpts of the byte stream back into the original
stream. Implementing this in a discrete testable module will make handling incoming
segments much easier.

(CS144: Introduction to Computer Networking Fall 2020

The full (public) interface of the reassembler is described by the StreamReassembler class
in the stream reassembler.hh header. Your task is to implement this class. You may add
any private members and member functions you desire to the StreamReassembler class, but
you cannot change its public interface.

3.1 What’s the “capacity”?

Your push _substring method will ignore any portion of the string that would cause the
StreamReassembler to exceed its “capacity”: a limit on memory usage, i.e. the maximum
number of bytes it is ever allowed to store. This prevents the reassembler from using an
unbounded amount of memory, no matter what the TCP sender decides to do. We’ve
illustrated this in the picture below. The “capacity” is an upper bound on both:

1. The number of bytes in the reassembled ByteStream (shown in green below), and

2. The maximum number of bytes that can be used by “unassembled” substrings (shown
in red)

width: capacity

first unacceptable

stream start first unread first unassembled

received bytes that the re-assembler is holding in auxiliary storage

received bytes that the re-assembler is holding in its ByteStream

- received bytes that have been read already

You may find this picture useful as you implement the StreamReassembler and work through
the tests—it’s not always natural what the “right” behavior is.

(CS144: Introduction to Computer Networking Fall 2020

3.2 FAQs

o What is the index of the first byte in the whole stream? Zero.

e How efficient should my implementation be? Please don’t take this as a challenge to
build a grossly space- or time-inefficient data structure—this data structure will be the
foundation of your TCP implementation. A ballpark expectation would be that each of
the new Lab 1 tests can complete in less than half a second.

e How should inconsistent substrings be handled? You may assume that they don’t
exist. That is, you can assume that there is a unique underlying byte-stream, and all
substrings are (accurate) slices of it.

o What may I use? You may use any part of the standard library you find helpful. In
particular, we expect you to use at least one data structure.

o When should bytes be written to the stream? As soon as possible. The only situation in
which a byte should not be in the stream is that when there is a byte before it that has
not been “pushed” yet.

o May substrings provided to the push_substring () function overlap? Yes.

o Will I need to add private members to the StreamReassembler? Yes. Substrings may
arrive in any order, so your data structure will have to “remember” substrings until
they’re ready to be put into the stream—that is, until all indices before them have been
written.

e [s it okay for our re-assembly data structure to store overlapping substrings? No. It
is possible to implement an “interface-correct” reassembler that stores overlapping
substrings. But allowing the re-assembler to do this undermines the notion of “capacity”
as a memory limit. We’ll consider the storage of overlapping substrings to be a style
violation when grading.

e More FAQs: For more, please see https://cs144.github.io/lab_faq.html.

4 Development and debugging advice

1. You can test your code (after compiling it) with [make check labi].

2. Please re-read the section on “using Git” in the Lab 0 document, and remember to
keep the code in the Git repository it was distributed in on the master branch. Make
small commits, using good commit messages that identify what changed and why.

3. Please work to make your code readable to the CA who will be grading it for style.
Use reasonable and clear naming conventions for variables. Use comments to explain
complex or subtle pieces of code. Use “defensive programming”—explicitly check

https://cs144.github.io/lab_faq.html

(CS144: Introduction to Computer Networking Fall 2020

preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make it hard to follow your code.

4. Please also keep to the “Modern C++" style described in the Lab 0 document. The
cppreference website (https://en.cppreference.com) is a great resource, although you
won’t need any sophisticated features of C++ to do these labs. (You may sometimes
need to use the move () function to pass an object that can’t be copied.)

5. If you get a segmentation fault, something is really wrong! We would like you to be
writing in a style where you use safe programming practices to make segfaults extremely
unusual (no malloc(), no new, no pointers, safety checks that throw exceptions where
you are uncertain, etc.). That said, to debug you can configure your build directory
with |cmake .. -DCMAKE_BUILD_TYPE=RelASan| to enable the compiler’s “sanitizers”
to detect memory errors and undefined behavior and give you a nice diagnostic about
when they occur. You can also use the valgrind tool. You can also configure with
\cmake .. —DCMAKE,BUILD,TYPE=Debug‘ and use the GNU debugger (gdb). But please
remember that these options (especially the sanitizers) will slow down compilation and
execution—you don’t want to accidentally leave them in place!

6. You can reset the build system with [make clean|and|cmake .. -DCMAKE BUILD TYPE=Release|.
Or if you get your builds really stuck and aren’t sure how to fix them, you can erase
your build directory ((rm -rf build| please be careful not to make a typo as this

will erase whatever you tell it), make a new build directory, and again.

5 Submit

1. In your submission, please only make changes to the .hh and .cc files in the top level
of libsponge. Within these files, please feel free to add private members as necessary,
but please don’t change the public interface of any of the classes.

2. Before handing in any assignment, please run these in order:

(a) |make format | (to normalize the coding style)

(b) (to make sure the code compiles)

(c) [make check_labi| (to make sure the automated tests pass)

3. Write a report in writeups/labl.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you

https://en.cppreference.com

(CS144: Introduction to Computer Networking Fall 2020

()

inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

4. In your writeup, please also fill in the number of hours the assignment took you and
any other comments.

5. When ready to submit, please follow the instructions at https://cs144.github.io/submit.
Please make sure you have committed everything you intend before submitting.

6. Please let the course staff know ASAP of any problems at the Wednesday-evening lab
session, or by posting a question on Piazza. Good luck!

https://cs144.github.io/submit

	Collaboration Policy
	Overview
	Getting started
	Putting substrings in sequence
	What's the ``capacity''?
	FAQs

	Development and debugging advice
	Submit

