
CS144: Introduction to Computer Networking Fall 2020

Lab 2: the TCP receiver

Due: Tuesday, October 6, 5 p.m. Stanford time
Lab session: Wednesday, Sept. 30, 6–9 p.m. Stanford time

Labs 1 & 2 are both due on October 6, but there is a bonus for handing in Lab 1 a week early.

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: You may not show your code to anyone else, look at anyone else’s
code, or look at solutions from previous years. You may discuss the assignments with other
students, but do not copy anybody’s code. If you discuss an assignment with another student,
including at the lab session, please name them in your writeup. Please refer to the course
administrative handout for more details, and ask on Piazza if anything is unclear.

Piazza: Please feel free to ask questions on Piazza, but please don’t post any source code.

1 Overview

In Lab 0, you implemented the abstraction of a flow-controlled byte stream (ByteStream).
And in Lab 1, you created a StreamReassembler that accepts a sequence of substrings, all
excerpted from the same byte stream, and reassembles them back into the original stream.

These modules will prove useful in your TCP implementation, but nothing in them was
specific to the details of the Transmission Control Protocol. That changes now. In Lab 2,
you will implement the TCPReceiver, the part of a TCP implementation that handles the
incoming byte stream. The TCPReceiver translates between incoming TCP segments (the
payloads of datagrams carried over the Internet) and the incoming byte stream.

Here’s the diagram again from the last lab. The TCPReceiver receives segments from
the Internet (via the segment received() method) and turns them into calls to your
StreamReassembler, which eventually writes to the incoming ByteStream. Applications
read from this ByteStream, just as you did in Lab 0 by reading from the TCPSocket.



CS144: Introduction to Computer Networking Fall 2020

TCPConnection

TCPSender

CS144TCPSocket

TCPReceiver

StreamReassembler

ByteStream

(“inbound”)

ByteStream

(“outbound”)

writes
(to the socket)

reads
(from the socket)

TCPSegment
(seqno, SYN, payload, FIN)

(ackno,
 window_size)⊕

IPv4Datagram
(with TCPSegment as payload)

TCPSegment
(+ add port numbers) to Internet

from Internet IPv4Datagram
(with TCPSegment as payload) TCPSegment

segment_received(TCPSegment)

ack_received(ackno, window_size)

segment_received(TCPSegment)

In addition to writing to the incoming stream, the TCPReceiver is responsible for telling the
sender two things:

1. the index of the “first unassembled” byte, which is called the “acknowledgment number”
or “ackno.” This is the first byte that the receiver needs from the sender.

2. the distance between the “first unassembled” index and the “first unacceptable” index.
This is called the “window size”.

Together, the ackno and window size describe describes the receiver’s window: a range
of indexes that the TCP sender is allowed to send. Using the window, the receiver can
control the flow of incoming data, making the sender limit how much it sends until the
receiver is ready for more. We sometimes refer to the ackno as the “left edge” of the window
(smallest index the TCPReceiver is interested in), and the ackno + window size as the “right
edge” (just beyond the largest index the TCPReceiver is interested in).

You’ve already done most of the algorithmic work involved in implementing the TCPReceiver

when you wrote the StreamReassembler and ByteStream; this lab is about wiring those
general classes up to the details of TCP. The hardest part will involve thinking about how
TCP will represent each byte’s place in the stream—known as a “sequence number.”



CS144: Introduction to Computer Networking Fall 2020

2 Getting started

Your implementation of a TCPReceiver will use the same Sponge library that you used in
Labs 0 and 1, with additional classes and tests. To get started:

1. Make sure you have committed all your solutions to Lab 1. Please don’t modify any
files outside the top level of the libsponge directory, or webget.cc. You may have
trouble merging the Lab 1 starter code otherwise.

2. While inside the repository for the lab assignments, run git fetch to retrieve the
most recent version of the lab assignments.

3. Download the starter code for Lab 2 by running git merge origin/lab2-startercode .

4. Within your build directory, compile the source code: make (you can run, e.g.,
make -j4 to use four processors when compiling).

5. Outside the build directory, open and start editing the writeups/lab2.md file. This
is the template for your lab writeup and will be included in your submission.

3 Lab 2: The TCP Receiver

TCP is a protocol that reliably conveys a pair of flow-controlled byte streams (one in each
direction) over unreliable datagrams. Two parties participate in the TCP connection, and
each party acts as both “sender” (of its own outgoing byte-stream) and “receiver” (of an
incoming byte-stream) at the same time. The two parties are called the “endpoints” of the
connection, or the “peers.”

This week, you’ll implement the “receiver” part of TCP, responsible for receiving TCP
segments (the actual datagram payloads), reassembling the byte stream (including its ending,
when that occurs), and determining that signals that should be sent back to the sender for
acknowledgment and flow control.

?Why am I doing this? These signals are crucial to TCP’s ability to provide the service
of a flow-controlled, reliable byte stream over an unreliable datagram network. In TCP,
acknowledgment means, “What’s the index of the next byte that the receiver needs
so it can reassemble more of the ByteStream?” This tells the sender what bytes it
needs to send or resend. Flow control means, “What range of indices is the receiver
interested and willing to receive?” (usually as a function of its remaining capacity).
This tells the sender how much it’s allowed to send.



CS144: Introduction to Computer Networking Fall 2020

3.1 Translating between 64-bit indexes and 32-bit seqnos

As a warmup, we’ll need to implement TCP’s way of representing indexes. Last week you
created a StreamReassembler that reassembles substrings where each individual byte has a
64-bit stream index, with the first byte in the stream always having index zero. A 64-bit
index is big enough that we can treat it as never overflowing.1 In the TCP headers, however,
space is precious, and each byte’s index in the stream is represented not with a 64-bit index
but with a 32-bit “sequence number,” or “seqno.” This adds three complexities:

1. Your implementation needs to plan for 32-bit integers to wrap around.
Streams in TCP can be arbitrarily long—there’s no limit to the length of a ByteStream
that can be sent over TCP. But 232 bytes is only 4 GiB, which is not so big. Once a
32-bit sequence number counts up to 232 − 1, the next byte in the stream will have the
sequence number zero.

2. TCP sequence numbers start at a random value: To improve security and avoid
getting confused by old segments belonging to earlier connections between the same
endpoints, TCP tries to make sure sequence numbers can’t be guessed and are unlikely
to repeat. So the sequence numbers for a stream don’t start at zero. The first sequence
number in the stream is a random 32-bit number called the Initial Sequence Number
(ISN). This is the sequence number that represents the SYN (beginning of stream).
The rest of the sequence numbers behave normally after that: the first byte of data
will have the sequence number of the ISN+1 (mod 232), the second byte will have the
ISN+2 (mod 232), etc.

3. The logical beginning and ending each occupy one sequence number: In
addition to ensuring the receipt of all bytes of data, TCP makes sure that the beginning
and ending of the stream are received reliably. Thus, in TCP the SYN (beginning-of-
stream) and FIN (end-of-stream) control flags are assigned sequence numbers. Each of
these occupies one sequence number. (The sequence number occupied by the SYN flag
is the ISN.) Each byte of data in the stream also occupies one sequence number. Keep
in mind that SYN and FIN aren’t part of the stream itself and aren’t “bytes”—they
represent the beginning and ending of the byte stream itself.

These sequence numbers (seqnos) are transmitted in the header of each TCP segment. (And,
again, there are two streams—one in each direction. Each stream has separate sequence
numbers and a different random ISN.) It’s also sometimes helpful to talk about the concept
of an “absolute sequence number” (which always starts at zero and doesn’t wrap), and
about a “stream index” (what you’ve already been using with your StreamReassembler:
an index for each byte in the stream, starting at zero).

To make these distinctions concrete, consider the byte stream containing just the three-letter
string ‘cat’. If the SYN happened to have seqno 232 − 2, then the seqnos, absolute seqnos,
and stream indices of each byte are:

1Transmitting at 100 gigabits/sec, it would take almost 50 years to reach 264 bytes. By contrast, it takes
only a third of a second to reach 232 bytes.



CS144: Introduction to Computer Networking Fall 2020

element syn c a t fin
seqno 232 − 2 232 − 1 0 1 2

absolute seqno 0 1 2 3 4
stream index 0 1 2

The figure shows the three different types of indexing involved in TCP:

Sequence Numbers Absolute Sequence Numbers Stream Indices
• Start at the ISN • Start at 0 • Start at 0
• Include SYN/FIN • Include SYN/FIN • Omit SYN/FIN
• 32 bits, wrapping • 64 bits, non-wrapping • 64 bits, non-wrapping
• “seqno” • “absolute seqno” • “stream index”

Converting between absolute sequence numbers and stream indices is easy enough—just add
or subtract one. Unfortunately, converting between sequence numbers and absolute sequence
numbers is a bit harder, and confusing the two can produce tricky bugs. To prevent these bugs
systematically, we’ll represent sequence numbers with a custom type: WrappingInt32, and
write the conversions between it and absolute sequence numbers (represented with uint64 t).
WrappingInt32 is an example of a wrapper type: a type that contains an inner type (in this
case uint32 t) but provides a different set of functions/operators.

We’ve defined the type for you and provided some helper functions (see wrapping integers.hh),
but you’ll implement the conversions in wrapping integers.cc:

1. WrappingInt32 wrap(uint64 t n, WrappingInt32 isn)

Convert absolute seqno → seqno. Given an absolute sequence number (n) and an
Initial Sequence Number (isn), produce the (relative) sequence number for n.

2. uint64 t unwrap(WrappingInt32 n, WrappingInt32 isn, uint64 t checkpoint)

Convert seqno → absolute seqno. Given a sequence number (n), the Initial
Sequence Number (isn), and an absolute checkpoint sequence number, compute the
absolute sequence number that corresponds to n that is closest to the checkpoint.

Note: A checkpoint is required because any given seqno corresponds to many absolute
seqnos. E.g. with an ISN of zero, the seqno “17” corresponds to the absolute seqno of
17, but also 232 + 17, or 233 + 17, or 234 + 17, etc. The checkpoint helps resolve the
ambiguity: it’s an absolute seqno that the user of this class knows is “in the ballpark”
of the correct answer. Here, “in the ballpark” can mean any 64-bit number that’s
within ±231 of the right answer. In your TCP implementation, you’ll use the index of
the last reassembled byte as the checkpoint.

Hint: The cleanest/easiest implementation will use the helper functions provided in
wrapping integers.hh. The wrap/unwrap operations should preserve offsets—two
seqnos that differ by 17 will correspond to two absolute seqnos that also differ by 17.

You can test your implementation by running the WrappingInt32 tests. From the build

directory, run ctest -R wrap .

https://github.com/CS144/sponge/blob/lab2-startercode/libsponge/wrapping_integers.hh
https://github.com/CS144/sponge/blob/lab2-startercode/libsponge/wrapping_integers.cc
https://github.com/CS144/sponge/blob/lab2-startercode/libsponge/wrapping_integers.hh


CS144: Introduction to Computer Networking Fall 2020

3.2 Implementing the TCP receiver

Congratulations on getting the wrapping and unwrapping logic right! We’d shake your hand if
we could. In the rest of this lab, you’ll be implementing the TCPReceiver. It will (1) receive
segments from its peer, (2) reassemble the ByteStream using your StreamReassembler, and
(3) calculate the acknowledgment number (ackno) and the window size. The ackno and
window size will eventually be transmitted back to the peer in an outgoing segment.

First, please review the format of a TCP segment. This is the message that the two endpoints
send each other; it is the payload of the lower-level datagrams. The non-grayed-out fields
represent the information that’s of interest in this lab: the sequence number, the payload,
and the SYN and FIN flags. These are the fields that are written by the sender, and read
and acted on by the receiver.

The TCPSegment class represents this message in C++. Please review the documentation
for TCPSegment (https://cs144.github.io/doc/lab2/class t c p segment.html) and TCPHeader

(https://cs144.github.io/doc/lab2/struct t c p header.html). You may be interested in the
length in sequence space() method, which calculates how many sequence numbers a
segment occupies (including the fact that the SYN and FIN flags each occupy one sequence
number, along with each byte of the payload).

Next, let’s talk about the interface that your TCPReceiver will provide:

// Construct a `TCPReceiver` that will store up to `capacity` bytes

TCPReceiver(const size_t capacity); // implemented for you in .hh file

// Handle an inbound TCP segment

void segment_received(const TCPSegment &seg);

https://cs144.github.io/doc/lab2/class_t_c_p_segment.html
https://cs144.github.io/doc/lab2/struct_t_c_p_header.html
https://cs144.github.io/doc/lab2/class_t_c_p_segment.html#a41eb3ff25fee485849fd38eb31c990d6


CS144: Introduction to Computer Networking Fall 2020

// The ackno that should be sent to the peer

//

// returns empty if no SYN has been received

//

// This is the beginning of the receiver's window, or in other words,

// the sequence number of the first byte in the stream

// that the receiver hasn't received.

std::optional<WrappingInt32> ackno() const;

// The window size that should be sent to the peer

//

// Formally: this is the size of the window of acceptable indices

// that the receiver is willing to accept. It's the distance between

// the ``first unassembled'' and the ``first unacceptable'' index.

//

// In other words: it's the capacity minus the number of bytes that the

// TCPReceiver is holding in the byte stream.

size_t window_size() const;

// number of bytes stored but not yet reassembled

size_t unassembled_bytes() const; // implemented for you in .hh file

// Access the reassembled byte stream

ByteStream &stream_out(); // implemented for you in .hh file

The TCPReceiver is built around your StreamReassembler. We’ve implemented the con-
structor and the unassembled bytes and stream out methods for you in the .hh file. Here’s
what you’ll have to do for the others:

3.2.1 segment received()

This is the main workhorse method. TCPReceiver::segment received() will be called each
time a new segment is received from the peer.

This method needs to:

• Set the Initial Sequence Number if necessary. The sequence number of the first-
arriving segment that has the SYN flag set is the initial sequence number. You’ll want
to keep track of that in order to keep converting between 32-bit wrapped seqnos/acknos
and their absolute equivalents. (Note that the SYN flag is just one flag in the header.
The same segment could also carry data and could even have the FIN flag set.)

• Push any data, or end-of-stream marker, to the StreamReassembler. If the
FIN flag is set in a TCPSegment’s header, that means that the last byte of the payload
is the last byte of the entire stream. Remember that the StreamReassembler expects
stream indexes starting at zero; you will have to unwrap the seqnos to produce these.



CS144: Introduction to Computer Networking Fall 2020

3.2.2 ackno()

Returns an optional<WrappingInt32> containing the sequence number of the first byte that
the receiver doesn’t already know. This is the windows’s left edge: the first byte the receiver
is interested in receiving. If the ISN hasn’t been set yet, return an empty optional.

3.2.3 window size()

Returns the distance between the “first unassembled” index (the index corresponding to the
ackno) and the “first unacceptable” index.

3.3 Evolution of the TCPReceiver over the life of the connection

Over the course of a TCP connection, your TCPReceiver will evolve through a sequence of
states: from waiting for a SYN (with empty ackno), to an in-progress stream, to a stream
that’s finished, meaning input has ended on the ByteStream. The test suite will check that
your TCPReceiver correctly handles incoming TCPSegments and evolves through these states,
as shown below. (You don’t have to worry about the error state or the RST flag until Lab 4.)

LISTEN
“waiting for SYN: ackno � empty”

not ackno().has_value()

definition:

Evolution of the TCP receiver (as tested by the test suite)

SYN_RECV
“SYN received (ackno exists),
 and input to stream hasn't ended”

ackno().has_value()
and not stream_out().input_ended()

definition:

FIN_RECV
“input to stream h� ended”

stream_out().input_ended()

definition:

ERROR
“error (connection w� reset)”

stream_out().error()

definition:



CS144: Introduction to Computer Networking Fall 2020

4 Development and debugging advice

1. Implement the TCPReceiver’s public interface (and any private methods or functions
you’d like) in the file tcp receiver.cc. You may add any private members you like to
the TCPReceiver class in tcp receiver.hh.

2. After compiling, you can test your code with make check lab2 .

3. Please re-read the section on “using Git” in the Lab 0 document, and remember to
keep the code in the Git repository it was distributed in on the master branch. Make
small commits, using good commit messages that identify what changed and why.

4. Please work to make your code readable to the CA who will be grading it for style.
Use reasonable and clear naming conventions for variables. Use comments to explain
complex or subtle pieces of code. Use “defensive programming”—explicitly check
preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make your code harder to follow.

5. Please also keep to the “Modern C++” style described in the Lab 0 document. The
cppreference website (https://en.cppreference.com) is a great resource, although you
won’t need any sophisticated features of C++ to do these labs.

6. If you get a segmentation fault, something is really wrong! We would like you to be
writing in a style where you use safe programming practices to make segfaults extremely
unusual (no malloc(), no new, no pointers, safety checks that throw exceptions where
you are uncertain, etc.). That said, to debug you can configure your build directory
with cmake .. -DCMAKE BUILD TYPE=RelASan to enable the compiler’s “sanitizers”
to detect memory errors and undefined behavior and give you a nice diagnostic about
when they occur. You can also use the valgrind tool. You can also configure with
cmake .. -DCMAKE BUILD TYPE=Debug and use the GNU debugger (gdb). Both of

these will slow down your code—don’t forget to return to a “Release” build when done.

5 Submit

1. In your submission, please only make changes to the .hh and .cc files in the top level
of libsponge. Within these files, please feel free to add private members as necessary,
but please don’t change the public interface of any of the classes.

2. Before handing in any assignment, please run these in order:

(a) make format (to normalize the coding style)

(b) git status (to check for un-committed changes—if you have any, commit!)

(c) make (to make sure the code compiles)

https://en.cppreference.com


CS144: Introduction to Computer Networking Fall 2020

(d) make check lab2 (to make sure the automated tests pass)

3. Write a report in writeups/lab2.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you
inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

(b) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

(c) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

4. In your writeup, please also fill in the number of hours the assignment took you and
any other comments.

5. When ready to submit, please follow the instructions at https://cs144.github.io/submit.
Please make sure you have committed everything you intend before submitting.

6. Please let the course staff know ASAP of any problems at the Tuesday-evening lab
session, or by posting a question on Piazza. Good luck!

https://cs144.github.io/submit

	Collaboration Policy
	Overview
	Getting started
	Lab 2: The TCP Receiver
	Translating between 64-bit indexes and 32-bit seqnos
	Implementing the TCP receiver
	segment_received()
	ackno()
	window_size()

	Evolution of the TCPReceiver over the life of the connection

	Development and debugging advice
	Submit

