
CS144: Introduction to Computer Networking Fall 2020

Lab 3: the TCP sender

Due: Tuesday, October 27, 5 p.m. Stanford time (5% bonus if submitted by Oct. 15, 5 p.m.)
Lab sessions: Wednesday, Oct. 7, 14, and 21 (6–9 p.m. Stanford time)

Labs 3 & 4 are both due on Oct. 27, but there is a bonus for handing in Lab 3 early.

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: You may not show your code to anyone else, look at anyone else’s
code, or look at solutions from previous years. You may discuss the assignments with other
students, but do not copy anybody’s code. If you discuss an assignment with another student,
please name them in a comment in your submitted source code. Please refer to the course
administrative handout for more details, and ask on Piazza if anything is unclear.

Piazza: Please feel free to ask questions on Piazza, but please don’t post any source code.

1 Overview

In Lab 0, you implemented the abstraction of a flow-controlled byte stream (ByteStream). In
Labs 1 and 2, you implemented the tools that translate from segments carried in unreliable
datagrams to an incoming byte stream: the StreamReassembler and TCPReceiver.

Now, in Lab 3, you’ll implement the other side of the connection. The TCPSender is a tool
that translates from an outgoing byte stream to segments that will become the payloads of
unreliable datagrams. Finally, in Lab 4, you’ll combine your work from the previous to labs
to create a working TCP implementation: a TCPConnection that contains a TCPSender and
TCPReceiver. You’ll use this to talk to real servers on the Internet.

TCPConnection

TCPSender

CS144TCPSocket

TCPReceiver

StreamReassembler

ByteStream

(“inbound”)

ByteStream

(“outbound”)

writes
(to the socket)

reads
(from the socket)

TCPSegment
(seqno, SYN, payload, FIN)

(ackno,
 window_size)⊕

IPv4Datagram
(with TCPSegment as payload)

TCPSegment
(+ add port numbers) to Internet

from Internet IPv4Datagram
(with TCPSegment as payload) TCPSegment

segment_received(TCPSegment)

ack_received(ackno, window_size)

segment_received(TCPSegment)

CS144: Introduction to Computer Networking Fall 2020

2 Getting started

Your implementation of a TCPSender will use the same Sponge library that you used in Labs
0–2, with additional classes and tests. To get started:

1. Make sure you have committed all your solutions to Lab 2. Please don’t modify any
files outside the top level of the libsponge directory, or webget.cc. You may have
trouble merging the Lab 3 starter code otherwise.

2. While inside the repository for the lab assignments, run git fetch to retrieve the
most recent version of the lab assignments.

3. Download the starter code for Lab 3 by running git merge origin/lab3-startercode .

4. In a few days, we will release some extra tests that will help you avoid some common
errors—to include them, you’ll repeat the above two steps.

5. Within your build directory, compile the source code: make (you can run, e.g.,
make -j4 to use four processors when compiling).

6. Outside the build directory, open and start editing the writeups/lab3.md file. This
is the template for your lab writeup and will be included in your submission.

3 Lab 3: The TCP Sender

TCP is a protocol that reliably conveys a pair of flow-controlled byte streams (one in each
direction) over unreliable datagrams. Two parties participate in the TCP connection, and
each party acts as both “sender” (of its own outgoing byte-stream) and “receiver” (of an
incoming byte-stream) at the same time. The two parties are called the “endpoints” of the
connection, or the “peers.”

This week, you’ll implement the “sender” part of TCP, responsible for reading from a
ByteStream (created and written to by some sender-side application), and turning the stream
into a sequence of outgoing TCP segments. On the remote side, a TCP receiver1 transforms
those segments (those that arrive—they might not all make it) back into the original byte
stream, and sends acknowledgments and window advertisements back to the sender.

The TCP sender and receiver are each responsible for a portion of the TCP segment. The
TCP sender writes all of the fields of the TCPSegment that were relevant to the TCPReceiver
in Lab 2: namely, the sequence number, the SYN flag, the payload, and the FIN flag. However,
the TCP sender only reads the fields in the segment that are written by the receiver: the
ackno and the window size. Here is the structure of a TCP segment, highlighting only the
fields that will be read by the sender:

1It’s important to remember that the receiver can be any implementation of a valid TCP receiver—it
won’t necessarily be your own TCPReceiver. One of the valuable things about Internet standards is how
they establish a common language between endpoints that may otherwise act very differently.

CS144: Introduction to Computer Networking Fall 2020

It will be your TCPSender’s responsibility to:

• Keep track of the receiver’s window (processing incoming acknos and window sizes)

• Fill the window when possible, by reading from the ByteStream, creating new TCP
segments (including SYN and FIN flags if needed), and sending them. The sender
should keep sending segments until either the window is full or the ByteStream is
empty.

• Keep track of which segments have been sent but not yet acknowledged by the receiver—
we call these “outstanding” segments

• Re-send outstanding segments if enough time passes since they were sent, and they
haven’t been acknowledged yet

?Why am I doing this? The basic principle is to send whatever the receiver will allow
us to send (filling the window), and keep retransmitting until the receiver acknowledges
each segment. This is called “automatic repeat request” (ARQ). The sender divides the
byte stream up into segments and sends them, as much as the receiver’s window allows.
Thanks to your work last week, we know that the remote TCP receiver can reconstruct
the byte stream as long as it receives each index-tagged byte at least once—no matter
the order. The sender’s job is to make sure the receiver gets each byte at least once.

3.1 How does the TCPSender know if a segment was lost?

Your TCPSender will be sending a bunch of TCPSegments. Each will contain a (possibly-
empty) substring from the outgoing ByteStream, indexed with a sequence number to indicate
its position in the stream, and marked with the SYN flag at the beginning of the stream, and
FIN flag at the end.

In addition to sending those segments, the TCPSender also has to keep track of its outstanding

CS144: Introduction to Computer Networking Fall 2020

segments until the sequence numbers they occupy have been fully acknowledged. Periodically,
the owner of the TCPSender will call the TCPSender’s tick method, indicating the passage
of time. The TCPSender is responsible for looking through its collection of outstanding
TCPSegments and deciding if the oldest-sent segment has been outstanding for too long
without acknowledgment (that is, without all of its sequence numbers being acknowledged).
If so, it needs to be retransmitted (sent again).

Here are the rules for what “outstanding for too long” means.2 You’re going to be implement-
ing this logic, and it’s a little detailed, but we don’t want you to be worrying about hidden
test cases trying to trip you up or treating this like a word problem on the SAT. We’ll give
you some reasonable unit tests this week, and fuller integration tests in Lab 4 once you’ve
finished the whole TCP implementation. As long as you pass those tests 100% and your
implementation is reasonable, you’ll be fine.

?Why am I doing this? The overall goal is to let the sender detect when segments
go missing and need to be resent, in a timely manner. The amount of time to wait
before resending is important: you don’t want the sender to wait too long to resend a
segment (because that delays the bytes flowing to the receiving application), but you
also don’t want it to resend a segment that was going to be acknowledged if the sender
had just waited a little longer—that wastes the Internet’s precious capacity.

1. Every few milliseconds, your TCPSender’s tick method will be called with an argument
that tells it how many milliseconds have elapsed since the last time the method was
called. Use this to maintain a notion of the total number of milliseconds the TCPSender

has been alive. Please don’t try to call any “time” or “clock” functions from
the operating system or CPU—the tick method is your only access to the passage of
time. That keeps things deterministic and testable.

2. When the TCPSender is constructed, it’s given an argument that tells it the “initial value”
of the retransmission timeout (RTO). The RTO is the number of milliseconds to
wait before resending an outstanding TCP segment. The value of the RTO will change
over time, but the “initial value” stays the same. The starter code saves the “initial
value” of the RTO in a member variable called initial retransmission timeout.

3. You’ll implement the retransmission timer: an alarm that can be started at a certain
time, and the alarm goes off (or “expires”) once the RTO has elapsed. We emphasize
that this notion of time passing comes from the tick method being called—not by
getting the actual time of day.

4. Every time a segment containing data (nonzero length in sequence space) is sent
(whether it’s the first time or a retransmission), if the timer is not running, start it

2These are based on a simplified version of the “real” rules for TCP: RFC 6298, recommendations 5.1
through 5.6. The version here is a bit simplified, but your TCP implementation will still be able to talk with
real servers on the Internet.

CS144: Introduction to Computer Networking Fall 2020

running so that it will expire after RTO milliseconds (for the current value of RTO).
By “expire,” we mean that the time will run out a certain number of milliseconds in
the future.

5. When all outstanding data has been acknowledged, stop the retransmission timer.

6. If tick is called and the retransmission timer has expired:

(a) Retransmit the earliest (lowest sequence number) segment that hasn’t been fully
acknowledged by the TCP receiver. You’ll need to be storing the outstanding
segments in some internal data structure that makes it possible to do this.

(b) If the window size is nonzero:

i. Keep track of the number of consecutive retransmissions, and increment it
because you just retransmitted something. Your TCPConnection will use this
information to decide if the connection is hopeless (too many consecutive
retransmissions in a row) and needs to be aborted.

ii. Double the value of RTO. This is called “exponential backoff”—it slows down
retransmissions on lousy networks to avoid further gumming up the works.

(c) Reset the retransmission timer and start it such that it expires after RTO millisec-
onds (taking into account that you may have just doubled the value of RTO!).

7. When the receiver gives the sender an ackno that acknowledges the successful receipt
of new data (the ackno reflects an absolute sequence number bigger than any previous
ackno):

(a) Set the RTO back to its “initial value.”

(b) If the sender has any outstanding data, restart the retransmission timer so that it
will expire after RTO milliseconds (for the current value of RTO).

(c) Reset the count of “consecutive retransmissions” back to zero.

We would suggest implementing the functionality of the retransmission timer in a separate
class, but it’s up to you. If you do, please add it to the existing files (tcp sender.hh and
tcp sender.cc).

3.2 Implementing the TCP sender

Okay! We’ve discussed the basic idea of what the TCP sender does (given an outgoing
ByteStream, split it up into segments, send them to the receiver, and if they don’t get
acknowledged soon enough, keep resending them). And we’ve discussed when to conclude
that an outstanding segment was lost and needs to be resend.

Now it’s time for the concrete interface that your TCPSender will provide. There are four
important events that it needs to handle, each of which could end up sending a TCPSegment:

CS144: Introduction to Computer Networking Fall 2020

1. void fill window()

The TCPSender is asked to fill the window : it reads from its input ByteStream and
sends as many bytes as possible in the form of TCPSegments, as long as there are new
bytes to be read and space available in the window.

You’ll want to make sure that every TCPSegment you send fits fully inside the receiver’s
window. Make each individual TCPSegment as big as possible, but no bigger than the
value given by TCPConfig::MAX PAYLOAD SIZE (1452 bytes).

You can use the TCPSegment::length in sequence space() method to count the total
number of sequence numbers occupied by a segment. Remember that the SYN and
FIN flags also occupy a sequence number each, which means that they occupy space in
the window.

?What should I do if the window size is zero? If the receiver has announced a
window size of zero, the fill window method should act like the window size is
one. The sender might end up sending a single byte that gets rejected (and not
acknowledged) by the receiver, but this can also provoke the receiver into sending
a new acknowledgment segment where it reveals that more space has opened up
in its window. Without this, the sender would never learn that it was allowed to
start sending again.

2. void ack received(const WrappingInt32 ackno, const uint16 t window size)

A segment is received from the receiver, conveying the new left (= ackno) and right (=
ackno + window size) edges of the window. The TCPSender should look through its
collection of outstanding segments and remove any that have now been fully acknowl-
edged (the ackno is greater than all of the sequence numbers in the segment). The
TCPSender should fill the window again if new space has opened up.

3. void tick(const size t ms since last tick):

Time has passed — a certain number of milliseconds since the last time this method
was called. The sender may need to retransmit an outstanding segment.

4. void send empty segment(): The TCPSender should generate and send a TCPSegment

that has zero length in sequence space, and with the sequence number set correctly.
This is useful if the owner (the TCPConnection that you’re going to implement next
week) wants to send an empty ACK segment.

Note: a segment like this one, which occupies no sequence numbers, doesn’t need to be
kept track of as “outstanding” and won’t ever be retransmitted.

To complete Lab 3, please review the full interface in the documentation, at https://cs144.
github.io/doc/lab3/class t c p sender.html, and implement the complete TCPSender public
interface in the tcp sender.hh and tcp sender.cc files. We expect you’ll want to add
private methods and member variables, and possibly a helper class.

https://cs144.github.io/doc/lab3/class_t_c_p_sender.html
https://cs144.github.io/doc/lab3/class_t_c_p_sender.html

CS144: Introduction to Computer Networking Fall 2020

3.3 Theory of testing

To test your code, the test suite will expect it to evolve through a series of situations—from
sending the first SYN segment, to sending all the data, to sending the FIN segment, and
finally having the FIN segment acknowledged. We don’t think you want to make more
state variables to track these “states”—the states are simply defined by the already-exposed
public interface of your TCPSender class. But to help you understand the test outputs, here
is a diagram of the expected evolution of the TCPSender through the life of the stream. (You
don’t have to worry about the error state or the RST flag until Lab 4.)

Evolution of the TCP sender (as tested by the test suite)

"SYN_SENT"
“stream started but nothing acknowledged”

next_seqno_absolute() > 0
and next_seqno_absolute() == bytes_in_flight()

definition:

ERROR
“error (connection w� reset)”

stream_in().error()

definition:

"CLOSED"
“waiting for stream to begin (no SYN sent)”

next_seqno_absolute() == 0

definition:

"SYN_ACKED"
“stream ongoing”

next_seqno_absolute() > bytes_in_flight()
and not stream_in().eof()

definition:

"SYN_ACKED" (also)
“stream ongoing” (stream h� reached EOF, but FIN flag hasn't been sent yet)

stream_in().eof()
and next_seqno_absolute() < stream_in().bytes_written() + 2

definition (remember that the SYN and FIN flags each occupy one sequence number, hence the “+2”):

"FIN_SENT"
“stream finished (FIN sent) but not fully acknowledged”

stream_in().eof()
and next_seqno_absolute() == stream_in().bytes_written() + 2
and sender.bytes_in_flight() > 0

definition:

"FIN_ACKED"
“stream finished and fully acknowledged”

stream_in().eof()
and next_seqno_absolute() == stream_in().bytes_written() + 2
and sender.bytes_in_flight() == 0

definition:

3.4 FAQs and special cases

• How do I “send” a segment?

Push it on to the segments out queue. As far as your TCPSender is concerned, consider
it sent as soon as you push it on to this queue. Soon the owner will come along and
pop it (using the public segments out() accessor method) and really send it.

CS144: Introduction to Computer Networking Fall 2020

• Wait, how do I both “send” a segment and also keep track of that same segment as
being outstanding, so I know what to retransmit later? Don’t I have to make a copy of
each segment then? Is that wasteful?

When you send a segment that contains data, you’ll probably want to push it on to
the segments out queue and also keep a copy of it internally in a data structure that
lets you keep track of outstanding segments for possible retransmission. This turns out
not to be very wasteful because the segment’s payload is stored as a reference-counted
read-only string (a Buffer object). So don’t worry about it—it’s not actually copying
the payload data.

• What should my TCPSender assume as the receiver’s window size before I’ve gotten an
ACK from the receiver?

One byte.

• What do I do if an acknowledgment only partially acknowledges some outstanding
segment? Should I try to clip off the bytes that got acknowledged?

A TCP sender could do this, but for purposes of this class, there’s no need to get fancy.
Treat each segment as fully outstanding until it’s been fully acknowledged—all of the
sequence numbers it occupies are less than the ackno.

• If I send three individual segments containing “a,” “b,” and “c,” and they never get
acknowledged, can I later retransmit them in one big segment that contains “abc”? Or
do I have to retransmit each segment individually?

Again: a TCP sender could do this, but for purposes of this class, no need to get fancy.
Just keep track of each outstanding segment individually, and when the retransmission
timer expires, send the earliest outstanding segment again.

• Should I store empty segments in my “outstanding” data structure and retransmit them
when necessary?

No—the only segments that should be tracked as outstanding, and possibly retransmit-
ted, are those that convey some data—i.e. that consume some length in sequence space.
A segment that occupies no sequence numbers (no payload, SYN, or FIN) doesn’t need
to be remembered or retransmitted.

• Where can I read if there are more FAQs after this PDF comes out?

Please check the website (https://cs144.github.io/lab faq.html) and Piazza regularly.

4 Development and debugging advice

1. Implement the TCPSender’s public interface (and any private methods or functions
you’d like) in the file tcp sender.cc. You may add any private members you like to
the TCPSender class in tcp sender.hh.

2. You can test your code (after compiling it) with make check lab3 .

https://cs144.github.io/lab_faq.html

CS144: Introduction to Computer Networking Fall 2020

3. Please re-read the section on “using Git” in the Lab 0 document, and remember to
keep the code in the Git repository it was distributed in on the master branch. Make
small commits, using good commit messages that identify what changed and why.

4. Please work to make your code readable to the CA who will be grading it for style.
Use reasonable and clear naming conventions for variables. Use comments to explain
complex or subtle pieces of code. Use “defensive programming”—explicitly check
preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make it hard to follow your code.

5. Please also keep to the “Modern C++” style described in the Lab 0 document. The
cppreference website (https://en.cppreference.com) is a great resource, although you
won’t need any sophisticated features of C++ to do these labs. (You may sometimes
need to use the move() function to pass an object that can’t be copied.)

6. If you get a segmentation fault, something is really wrong! We would like you to be
writing in a style where you use safe programming practices to make segfaults extremely
unusual (no malloc(), no new, no pointers, safety checks that throw exceptions where
you are uncertain, etc.). That said, to debug you can configure your build directory
with cmake .. -DCMAKE BUILD TYPE=RelASan to enable the compiler’s “sanitizers”
to detect memory errors and undefined behavior and give you a nice diagnostic about
when they occur. You can also use the valgrind tool. You can also configure with
cmake .. -DCMAKE BUILD TYPE=Debug and use the GNU debugger (gdb). Remember

to use these settings for debugging only—they dramatically slow down both compilation
and execution of your programs. The most reliable/foolproof way to revert to “Release”
mode is just to blow away the build directory and create a new one.

5 Submit

1. In your submission, please only make changes to the .hh and .cc files in the top level
of libsponge. Within these files, please feel free to add private members as necessary,
but please don’t change the public interface of any of the classes.

2. Before handing in any assignment, please run these in order:

(a) make format (to normalize the coding style)

(b) git status (to check for un-committed changes—if you have any, commit!)

(c) make (to make sure the code compiles)

(d) make check lab3 (to make sure the automated tests pass)

3. Write a report in writeups/lab3.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

https://en.cppreference.com

CS144: Introduction to Computer Networking Fall 2020

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you
inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

(b) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

(c) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

4. Please also fill in the number of hours the assignment took you and any other comments.

5. When ready to submit, please follow the instructions at https://cs144.github.io/submit.
Please make sure you have committed everything you intend before submitting.

6. Please let the course staff know ASAP of any problems at the Wednesday-evening lab
session, or by posting a question on Piazza. Good luck!

https://cs144.github.io/submit

	Collaboration Policy
	Overview
	Getting started
	Lab 3: The TCP Sender
	How does the TCPSender know if a segment was lost?
	Implementing the TCP sender
	Theory of testing
	FAQs and special cases

	Development and debugging advice
	Submit

