
CS144: Introduction to Computer Networking Fall 2020

Lab 6: building an IP router

Due: Thursday, Nov. 12, 5 p.m.
Lab sessions: Wednesdays, Nov. 4 & 11, 6–9 p.m.

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: You may not show your code to anyone else, look at anyone else’s
code, or look at solutions from previous years. You may discuss the assignments with other
students, but do not copy anybody’s code. If you discuss an assignment with another student,
please name them in a comment in your submitted source code. Please refer to the course
administrative handout for more details, and ask on Piazza if anything is unclear.

Piazza: Please feel free to ask questions on Piazza, but please don’t post any source code.

1 Overview

In this week’s lab, you’ll implement an IP router on top of your existing NetworkInterface.
A router has several network interfaces, and can receive Internet datagrams on any of them.
The router’s job is to forward the datagrams it gets according to the routing table: a list
of rules that tells the router, for any given datagram,

• What interface to send it out

• The IP address of the next hop

Your job is to implement a router that can figure out these two things for any given datagram.
(You will not need to implement the algorithms that make the routing table, e.g. RIP, OSPF,
BGP, or an SDN controller—just the algorithm that follows the routing table.)

Your implementation of the router will use the Sponge library with a new Router class, and
tests that will check your router’s functionality in a simulated network. Lab 6 builds on
your implementation of NetworkInterface from Lab 5, but does not use the TCP stack you
implemented in Labs 0–4. IP routers don’t have to know anything about TCP, ARP, or
Ethernet (only IP). We expect your implementation will require about 25–30 lines of code.

CS144: Introduction to Computer Networking Fall 2020

Routing logic
(longest-prefix match)

Lab 6Lab 6

Network Interface

Internet datagrams

Network
to London

Network Interface

Internet datagrams

Network Interface

Internet datagrams

Network
to São Paulo

Network
to Chicago

Figure 1: A router contains several network interfaces and can receive IP datagrams on
any one of them. The router forwards any datagram it receives to the next hop, on the
appropriate outbound interface. The routing table tells the router how to make this decision.

2 Getting started

1. Make sure you have committed all your solutions to Lab 5. Please don’t modify any
files outside the top level of the libsponge directory, or webget.cc. (And please don’t
add extra files that your code relies upon.) You may have trouble merging the Lab 6
starter code otherwise.

2. While inside the repository for the lab assignments, run git fetch to retrieve the
most recent version of the lab assignments.

3. Download the starter code for Lab 5 by running git merge origin/lab6-startercode .

4. Within your build directory, compile the source code: make (you can run, e.g.,
make -j4 to use four processors when compiling).

5. Outside the build directory, open and start editing the writeups/lab6.md file. This
is the template for your lab writeup and will be included in your submission.

3 Implementing the Router

In this lab, you will implement a Router class that can:

• keep track of a routing table (the list of forwarding rules, or routes), and

• forward each datagram it receives:

– to the correct next hop

– on the correct outgoing NetworkInterface.

CS144: Introduction to Computer Networking Fall 2020

Your implementation will be added to the router.hh and router.cc skeleton files. Before you
get to coding, please review the documentation for the new Router class.

Here are the two methods you’ll implement, and what we’re expecting in each:

void add_route(const uint32_t route_prefix,

const uint8_t prefix_length,

const optional<Address> next_hop,

const size_t interface_num);

This method adds a route to the routing table. You’ll want to add a data structure as a
private member in the Router class to store this information. All this method needs to do is
save the route for later use.

What do the parts of a route mean?

A route is a “match-action” rule: it tells the router that if a datagram is headed for a
particular network (a range of IP addresses), and if the route is chosen as the most
specific matching route, then the router should forward the datagram to a particular
next hop on a particular interface.

The “match”: is the datagram headed for this network? The route prefix

and prefix length together specify a range of IP addresses (a network) that might
include the datagram’s destination. The route prefix is a 32-bit numeric IP address.
The prefix length is a number between 0 and 32 (inclusive); it tells the router how
many most-significant bits of the route prefix are significant. For example, to express
a route to the network “18.47.0.0/16” (this matches any 32-bit IP address where the first
two bytes are 18 and 47), the route prefix would be 305070080 (18 × 224 + 47 × 216),
and the prefix length would be 16. Any datagram destined for “18.47.x.y” will
match.

The “action”: what to do if the route matches and is chosen. If the router is
directly attached to the network in question, the next hop will be an empty optional.
In that case, the next hop is the datagram’s destination address. But if the router is
connected to the network in question through some other router, the next hop will
contain the IP address of the next router along the path. The interface num gives the
index of the router’s NetworkInterface that should use to send the datagram to the
next hop. You can access this interface with the interface(interface num) method.

https://github.com/CS144/sponge/blob/lab6-startercode/libsponge/router.hh
https://github.com/CS144/sponge/blob/lab6-startercode/libsponge/router.cc
https://cs144.github.io/doc/lab6/class_router.html

CS144: Introduction to Computer Networking Fall 2020

void route_one_datagram(InternetDatagram &dgram);

Here’s where the rubber meets the road. This method needs to route one datagram to the
next hop, out the appropriate interface. It needs to implement the “longest-prefix match”
logic of an IP router to find the best route to follow. That means:

• The Router searches the routing table to find the routes that match the datagram’s
destination address. By “match,” we mean the most-significant prefix length bits of
the destination address are identical to the most-significant prefix length bits of the
route prefix.

• Among the matching routes, the router chooses the route with the biggest value of
prefix length. This is the longest-prefix-match route.

• If no routes matched, the router drops the datagram.

• The router decrements the datagram’s TTL (time to live). If the TTL was zero already,
or hits zero after the decrement, the router should drop the datagram.

• Otherwise, the router sends the modified datagram on the appropriate interface
(interface(interface num).send datagram()) to the appropriate next hop.

There’s a beauty (or at least a successful abstraction) in the Internet’s design here: the
router never thinks about TCP, about ARP, or about Ethernet frames. The router
doesn’t even know what the link layer looks like. The router only thinks about Internet
datagrams, and only interacts with the link layer through the NetworkInterface

abstraction. When it comes to questions like, “How are link-layer addresses resolved?”
or “Does the link layer even have its own addressing scheme distinct from IP?” or
“What’s the format of the link-layer frames?” or “What’s the meaning of the datagram’s
payload?”, the router just doesn’t care.

4 Testing

You can test your implementation by running make check lab6 . This will test your router
in a particular simulated network, shown in Figure 2.

5 Q & A

• What data structure should I use to record the routing table?

Up to you! But no need to get crazy. It’s perfectly acceptable for each datagram to
require O(N) work, where N is the number of entries in the routing table. If you’d like
to do something more efficient, we’d encourage you to get a working implementation

CS144: Introduction to Computer Networking Fall 2020

NetworkInterface
 "default_router"

171.67.76.1

NetworkInterface
 "default"

171.67.76.46

route: 0.0.0.0/0 via 171.67.76.1

Router

NetworkInterface
 "applesauce"

10.0.0.2

NetworkInterface
 "eth0"
10.0.0.1

route: 10.0.0.0/8 (direct)

NetworkInterface
 "eth1"

172.16.0.1

route: 172.16.0.0/16 (direct)

NetworkInterface
 "cherrypie"
192.168.0.2

NetworkInterface
 "eth2"

192.168.0.1
route: 192.168.0.0/24 (direct)

NetworkInterface
 "hs_router"
143.195.0.1

NetworkInterface
 "dm42"

198.178.229.42

NetworkInterface
 "dm43"

198.178.229.43

NetworkInterface
 "uun3"

198.178.229.1

route: 198.178.229.0/24 (direct)

NetworkInterface
 "hs4"

143.195.0.2

route: 143.195.0.0/17 via 143.195.0.1
route: 143.195.128.0/18 via 143.195.0.1
route: 143.195.192.0/19 via 143.195.0.1

NetworkInterface
 "mit5"

128.30.76.255

route: 128.30.76.255/16 via 128.30.0.1

Figure 2: The simulated test network used in the apps/network simulator tool, also run
by make check lab6 . (Fun fact: the uun network is David Mazières’s slice of the Internet,
allocated in 1993. The whois tool, or the linked website, can be used to look up who controls
each IP address allocation.)

https://whois.arin.net/rest/net/NET-198-178-229-0-1
https://whois.arin.net/rest/net/NET-198-178-229-0-1

CS144: Introduction to Computer Networking Fall 2020

first before optimizing, and carefully document and comment whatever you choose to
implement.

• How do I convert an IP address that comes in the form of an Address object, into a
raw 32-bit integer that I can write into the ARP message?

Use the Address::ipv4 numeric() method.

• How do I convert an IP address that comes in the form of a raw 32-bit integer into an
Address object?

Use the Address::from ipv4 numeric() method.

• How do I compare the most-significant N bits (where 0 ≤ N ≤ 32) of one 32-bit IP
address with the most-significant N bits of another 32-bit IP address?

This is probably the “trickiest” part of this assignment—getting that logic right. It
may be worth writing a small test program in C++ (a short standalone program) or
adding a test to Sponge to verify your understanding of the relevant C++ operators
and double-check your logic.

Recall that in C and C++, it can produce undefined behavior to shift a 32-bit integer
by 32 bits. It’s a good idea to make clean and compile your code with the sanitizers
on (cmake -DCMAKE BUILD TYPE=RelASan ..) to try to catch any undefined behavior
in your code before you submit.

You can run the router test directly by running ./apps/network simulator from
inside the build directory.

• If the router has no route to the destination, or if the TTL hits zero, shouldn’t it send
an ICMP error message back to the datagram’s source?

In real life, yes, that would be helpful. But not necessary in this lab—dropping the
datagram is sufficient. (Even in the real world, not every router will send an ICMP
message back to the source in these situations.)

• How do I run the test suite for this lab?

make check lab6 (two tests). Or you can run the entire test suite with make check

(161 tests).

• Where can I read if there are more FAQs after this PDF comes out?

Please check the website (https://cs144.github.io/lab faq.html) and Piazza regularly.

6 Submit

1. In your submission, please only make changes to the .hh and .cc files in the top level
of libsponge. Within these files, please feel free to add private members as necessary,
but please don’t change the public interface of any of the classes.

https://cs144.github.io/lab_faq.html

CS144: Introduction to Computer Networking Fall 2020

2. Please don’t add extra files—the automatic grader won’t look at them and your code
may fail to compile.

3. Before handing in any assignment, please run these in order:

(a) make format (to normalize the coding style)

(b) git status (to check for un-committed changes—if you have any, commit!)

(c) make (to make sure the code compiles)

(d) make check lab6 (to make sure the automated tests pass)

4. Write a report in writeups/lab6.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you
inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

(b) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

(c) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

5. Please also fill in the number of hours the assignment took you and any other comments.

6. When ready to submit, please follow the instructions at https://cs144.github.io/submit.
Please make sure you have committed everything you intend before submitting.

7. Please let the course staff know ASAP of any problems at the Wednesday-evening lab
sessions, or by posting a question on Piazza.

https://cs144.github.io/submit

	Collaboration Policy
	Overview
	Getting started
	Implementing the Router
	Testing
	Q & A
	Submit

