
CS144: Introduction to Computer Networking Fall 2020

Lab 7: putting it all together

Due: Friday, Nov. 20, 5 p.m.
Lab sessions: Wednesdays, Nov. 11 & 18, 6–9 p.m.

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: In this assignment, you will work with a lab partner to make a
network that connects your previous labs with theirs. As in past labs, you may not show your
code to them or anyone else, look at anyone else’s code, or look at solutions from previous
years. We do expert you to discuss what your code is doing with your lab partner or other
students (this may be needed to debug). If you discuss an assignment with another student,
please name them in a comment in your submitted source code or in your writeup. Please
refer to the course administrative handout for more details, and ask on Piazza if unclear.

Piazza: Please feel free to ask questions on Piazza, but please don’t post any source code.

1 Overview

By this point in the class, you’ve implemented a significant portion of the Internet’s in-
frastructure. From Lab 0 (a reliable byte stream), to Labs 1–4 (the Transmission Control
Protocol), Lab 5 (an IP/Ethernet network interface) and Lab 6 (an IP router), you have
done a lot of coding!

In this lab, you won’t need to do any coding (assuming your previous labs are in
reasonable working shape). Instead, to cap off your accomplishment, you’re going to use all
of your previous labs to create a real network that includes your network stack (host and
router) talking to the network stack implemented by another student in the class.

This lab is done in pairs. You will need to work with a lab partner (another student in the
class). Please use the lab sessions to find lab partners, or Piazza if you cannot attend the lab
session. If it’s necessary, the same student can serve as “lab partner” more than once.

2 Getting started

1. Make sure you have committed all your solutions to Lab 6. Please don’t modify any
files outside the top level of the libsponge directory, or webget.cc. (And please don’t



CS144: Introduction to Computer Networking Fall 2020

add extra files that your code relies upon.)

2. While inside the repository for the lab assignments, run git fetch to retrieve the
most recent version of the lab assignments.

3. Download the code for Lab 7 by running git merge origin/lab7-startercode .

4. Within your build directory, compile the source code: make (you can run, e.g.,
make -j4 to use four processors when compiling).

5. Outside the build directory, open and start editing the writeups/lab7.md file. This
is the template for your lab writeup and will be included in your submission.

3 The Network

In this lab, you’ll create a real network that combines your network stack with one implemented
by another student in the class. Each of you will contribute one host (including your reliable
Byte Stream, your TCP implementation, and your NetworkInterface) and one router:

NetworkInterface
 "host"

192.168.0.50

NetworkInterface
 "host_side"
192.168.0.1

route: 192.168.0.0/16 (direct)

Client Router

NetworkInterface
 "internet_side"

10.0.0.192

TCPConnection

TCPSender
TCPReceiver

StreamReassembler

ByteStreamByteStream

reliable byte streams

Internet Protocol

Labs 1-4
Labs 1-4

Lab 0

Lab 5

Lab 6

Lab 5

route: 10.0.0.0/8 (direct)
route: 172.16.0.0/12 via 10.0.0.172

NetworkInterface
 "host"

172.16.0.100

NetworkInterface
 "host_side"
172.16.0.1

route: 172.16.0.0/12 (direct)

Server Router

NetworkInterface
 "internet_side"

10.0.0.172

TCPConnection

TCPSender
TCPReceiver

StreamReassembler

ByteStreamByteStream

reliable byte streams

Internet Protocol

Labs 1-4
Labs 1-4

Lab 0

Lab 5

Lab 6

Lab 5

route: 10.0.0.0/8 (direct)
route: 192.168.0.0/16 via 10.0.0.192

Lab 5Lab 5 Lab 5Lab 5

cs144.keithw.org

Lab Partner #1 Lab Partner #2
C

lient H
ost

S
erver H

ost



CS144: Introduction to Computer Networking Fall 2020

Because it’s likely that you or your lab partner will be behind a Network Address Trans-
lator, the network connection between the two sides will flow through a relay server
(cs144.keithw.org).

We have glued your code together in a new application that can be found in build/apps/lab7.
Here are the steps to run it:

1. Before doing these steps with a lab partner, try them by yourself. You can play
both roles, client and server, by using two different windows or terminals on your VM.
This way your network will include two copies of your code (host and router) talking to
themselves. This is easier to debug than talking to a stranger!

Once these steps work on your own, then try them with a lab partner. Decide which of
the two of you will act as the “client” and who will be the “server”. Once it works, you
can always swap the roles and try again.

2. To use the relay, please pick a random even number between 1024 and 64000. This
identifies your lab group and needs to be different from any other lab group working at
the same time, so please do pick a random number. And it needs to be an even number.
For the rest of these examples, we’ll assume you picked “3000”:

3. From the “build” directory, the “server” student runs:
./apps/lab7 server cs144.keithw.org 3000

(replace “3000” with your actual number).

If all goes well, the “server” will print output like this:

$ ./apps/lab7 server cs144.keithw.org 3000

DEBUG: Network interface has Ethernet address 02:00:00:5e:61:17 and IP address 172.16.0.1

DEBUG: Network interface has Ethernet address 02:00:00:cd:e7:e0 and IP address 10.0.0.172

DEBUG: adding route 172.16.0.0/12 => (direct) on interface 0

DEBUG: adding route 10.0.0.0/8 => (direct) on interface 1

DEBUG: adding route 192.168.0.0/16 => 10.0.0.192 on interface 1

DEBUG: Network interface has Ethernet address 5a:75:4e:8b:20:00 and IP address 172.16.0.100

DEBUG: Listening for incoming connection...

4. From the “build” directory, the “client” student runs:
./apps/lab7 client cs144.keithw.org 3001

(replace “3001” with whatever your random number was, plus one).

If all goes well, the “client” will print output like this:

$ ./apps/lab7 client cs144.keithw.org 4001

DEBUG: Network interface has Ethernet address 02:00:00:41:c7:5b and IP address 192.168.0.1

DEBUG: Network interface has Ethernet address 02:00:00:e6:66:d9 and IP address 10.0.0.192

DEBUG: adding route 192.168.0.0/16 => (direct) on interface 0

DEBUG: adding route 10.0.0.0/8 => (direct) on interface 1

DEBUG: adding route 172.16.0.0/12 => 10.0.0.172 on interface 1

DEBUG: Network interface has Ethernet address 26:05:12:4a:8a:c9 and IP address 192.168.0.50

DEBUG: Connecting from 192.168.0.50:57005...

DEBUG: Connecting to 172.16.0.100:1234...

Successfully connected to 172.16.0.100:1234.



CS144: Introduction to Computer Networking Fall 2020

and the “server” will print one more line:

New connection from 192.168.0.50:57005.

5. If you see the expected output, you’re in really good shape—the two computers
have successfully exchanged a TCP handshake!

(a) Pat yourselves on the back (using appropriate social distancing protocols)—you’ve
earned it!

(b) Now it’s time to exchange data. Type in one of the windows, and see the output
appear in the other. Try typing in the reverse direction.

(c) Try ending the connection. Type ctrl -D when you are done. When each side
does so, it will end input on the outbound ByteStream in that direction, while
continuing to receive incoming data until the peer ends its own ByteStream. Verify
this happens.

(d) When both sides have ended their ByteStreams, and one side has finished lingering
for a few seconds, both programs should exit gracefully.

6. If you don’t see the expected output, it may be time to turn on “debug mode”.
Run the “lab7” program with one additional argument: append a “debug” to the end
of the command line. This will print out every Ethernet frame being exchanged, and
you can see all the ARP and TCP/IP frames.

7. Once you have the network working between two windows on your own computer, it’s
time to try the same steps with a lab partner (and their own implementation).

4 Sending a file

Once it looks like you can have a basic conversation, try sending a file over the network.
Again, you can try this yourself, and if all goes well, then try it with a lab partner. Here is
how:

To write a one-megabyte random file to “/tmp/big.txt”:

dd if=/dev/urandom bs=1M count=1 of=/tmp/big.txt

To have the server send the file as soon as it accepts an incoming connection:
./apps/lab7 server cs144.keithw.org even number < /tmp/big.txt

To have the client close its outbound stream and download the file:
</dev/null ./apps/lab7 client cs144.keithw.org odd number > /tmp/big-received.txt

To compare two files and make sure they’re the same:
sha256sum /tmp/big.txt or sha256sum /tmp/big-received.txt

If the SHA-256 hashes match, you can be almost certain the file was transmitted correctly.



CS144: Introduction to Computer Networking Fall 2020

5 Getting creative

For some (token) extra credit, if everything is working perfectly, we’d encourage you to do
something creative and put something interesting in your writeup. Please feel free to modify
the lab7.cc program as you see fit. You could create a more complicated network involving
more students at the same time, or do something else we haven’t anticipated. (To be clear:
this is not at all required.)

6 Submit

1. Write a report in writeups/lab7.md. This file should be a roughly 30-to-70-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

• Solo portion

– Did your implementation successfully start and end a conversation with
another copy of itself?

– Did it successfully transfer a one-megabyte file, with contents identical upon
receipt?

– Please describe what code changes, if any, were necessary to pass these steps.

• Group portion

– Who is your lab partner (and what is their SUNet ID, e.g. winstein)?

– Did your implementations successfully start and end a conversation with each
other (with each implementation acting as “client” or as “server”)?

– Did you successfully transfer a one-megabyte file between your two implemen-
tations, with contents identical upon receipt?

– Please describe what code changes, if any, were necessary to pass these steps,
either by you or your lab partner.

• Creative portion

– If you did anything for our “creative challenge,” please boast about it!

2. If you did have to make changes to source code, please only make changes to the .hh

and .cc files in the top level of libsponge. Within these files, please feel free to add
private members as necessary, but please don’t change the public interface.

3. Please don’t add extra files—the automatic grader won’t look at them and your code
may fail to compile.

4. Before handing in any assignment, please run these in order:

(a) make format (to normalize the coding style)

(b) git status (to check for un-committed changes—if you have any, commit!)



CS144: Introduction to Computer Networking Fall 2020

(c) make (to make sure the code compiles)

(d) make check (to run the full test suite—please make sure you have not broken
any tests)

5. Please also fill in the number of hours the assignment took you and any other comments.

6. When ready to submit, please follow the instructions at https://cs144.github.io/submit.
Please make sure you have committed everything you intend before submitting.

7. Please let the course staff know ASAP of any problems at the Wednesday-evening lab
sessions, or by posting a question on Piazza.

https://cs144.github.io/submit

	Collaboration Policy
	Overview
	Getting started
	The Network
	Sending a file
	Getting creative
	Submit

