CS144
 An Introduction to Computer Networks

Ethernet and CSMA/CD

Nick McKeown

Professor of Electrical Engineering
and Computer Science, Stanford University

The 4 Layer Internet Model

Source End-Host
Destination End-Host

Application	Router	Router	Application
Transport			Transport
Network	Network	Network	Network
Link	Link	Link	Link
	\uparrow	\uparrow	r

Stanford University

Ethernet
switch

Generic Packet Switch

Generic Packet Switch

Ethernet Switch

1. Examine the header of each arriving frame.
2. If the Ethernet DA (aka "MAC Address") is in the forwarding table, forward the frame to the correct output port(s).
3. If the Ethernet DA is not in the table, broadcast the frame to all ports (except the one through which the frame arrived).
i.e. flooding.
4. Entries in the table are learned by checking to see if the Ethernet SA of arriving packets are already in the table. If not, then add them.

Internet Router

1. If the Ethernet DA of the arriving frame belongs to the router, accept the frame. Else drop it.
2. Examine the IP version number and length of the datagram.
3. Decrement the TTL, update the IP header checksum.
4. Check to see if $\mathrm{TTL}==0$.
5. If the IP DA is in the forwarding table, forward to the next hop.
6. If IP DA doesn't match a table entry
a) If there is a Default Route entry, then forward to it (often a BGP router).
b) Else, drop the packet and send an ICMP message back to the source.
7. Find the Ethernet DA for the next hop router.
8. Create a new Ethernet frame and send it.

The Original Ethernet

Original pictures drawn by Bob Metcalfe, co-inventor of Ethernet (1972 - Xerox PARC)

Ethernet Frame Format

1. Preamble: trains clock-recovery circuits
2. Start of Frame Delimiter: indicates start of frame
3. Destination Address: 48-bit globally unique Ethernet address assigned by manufacturer.

1b: unicast/multicast
1b: local/global address
4. Type: Indicates protocol of encapsulated data (e.g. IP $=0 \times 0800$)
5. Pad: Zeroes used to ensure minimum frame length
6. Cyclic Redundancy Check: check sequence to detect bit errors.

The origins of Ethernet

Sharing a "medium"

- Ethernet is, or at least was originally, an example of multiple hosts sharing a common cable ("medium").
- To share the medium, we need to decide who gets to send, and when.
- There is a general class of "Medium Access Control Protocols", or MAC Protocols. Hence the name "MAC address".
- Ethernet uses a MAC protocol called "CSMA/CD".

CSMA/CD Protocol

All hosts transmit \& receive on one channel
Packets are of variable size.
When a host has a packet to transmit:

1. Carrier Sense: Check if the line is quiet before transmitting.
2. Collision Detection: Detect collision as soon as possible. If a collision is detected, stop transmitting; wait a random time, then return to step 1.

CSMA/CD Packet size requirement

Therefore, Host A is guaranteed to know about the collision while it is still transmitting if: $\frac{P}{R}>\frac{2 L}{c}$

CSMA/CD Packet size requirement

For an end host to detect a collision before it finishes transmitting a packet, we require:

$$
\frac{P}{R}>\frac{2 L}{c}
$$

where P is the size of a packet.

CSMA/CD Packet size requirement

Example:
$R=10 \mathrm{Mb} / \mathrm{s}, \mathrm{L}=10,000 \mathrm{~m}, \mathrm{c}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

$$
\therefore P_{\min }=\frac{2 L R}{c}=\frac{2 \times 10^{11}}{2 \times 10^{8}}=1,000 \mathrm{bits}
$$

Ethernet evolution

- Early 1980s: Ethernet was a $10 \mathrm{Mb} / \mathrm{s}$ shared medium. Literally a thick coaxial cable that snaked around the floor into which every computer was plugged.
- Late 1980s: Ethernet "10baseT" used the twisted-pair phone cables already installed in buildings. Used a star topology. Ethernet hubs connected end hosts together with one big collision domain.
- Early 1990s: Ethernet Switches were invented. Dedicated cable between the switch and the end host carrying packets in both directions simultaneously. No collisions any more!
- Since then: $100 \mathrm{Mb} / \mathrm{s}$ Ethernet, 1GE, 10GE, 100GE, 400GE, ...

Stanford University

```
Autonomous Systems (AS's) usually connect to each other


The 4 Layer Internet Model

Source End-Host
Destination End-Host
\begin{tabular}{|c|c|c|c|}
\hline Application & \multirow[b]{2}{*}{Router} & \multirow[b]{2}{*}{Router} & Application \\
\hline Transport & & & Transport \\
\hline Network & Network & Network & Network \\
\hline Link & Link & Link & Link \\
\hline & \(\uparrow\) & \(\uparrow\) & r \\
\hline
\end{tabular}

\section*{Ethernet switches operate at the link layer}


Ethernet DA of Router 2

\section*{Why an IXP uses Ethernet switches...}
- The IXP doesn't need to maintain routing tables
- The IXP doesn't need to exchange routing entries with its customers
- The IXP doesn't need to decide how packets are routed
- It merely provides "Link Layer" connectivity among its customers.

\section*{Ethernet in use today}
- Almost all enterprises and campuses use Ethernet as a simple, quick, cheap, easy-to-manage way to interconnect hosts and WiFi APs inside a building. Routers are typically use to connect buildings together.
- Data-centers typically use an Ethernet switch to connect 48-64 servers together in each rack. Called "Top of Rack" or ToR switches. Routing is typically used to connect racks together.```

