
Under the covers:
the networks of a cloud provider
Jeff Mogul
Google Network Infrastructure
mogul@google.com

1

Goal for today:
understand something about Cloud networks
“Cloud” is a fuzzy concept, but whatever it means, it involves networks

● Lots of networks, and different kinds

2

Agenda
● What do I mean by “Cloud”?
● What is a virtual network? (Just briefly)
● How do cloud providers create virtual networks? (Nick will tell you, soon)
● How do we build a scalable, reliable data-center network?
● How do we build scalable, reliable WANs?

3

Disclaimers & Credits
● Not all cloud providers do things exactly the same way
● There are a lot of things about Google that I can’t tell you

● I’ve borrowed a lot of material from other (mostly) Google talks:
● B4: Experience with a Globally-Deployed Software Defined WAN

■ by lots of Googlers; talk by Amin Vahdat, at SIGCOMM 2013
● a talk by Amin Vahdat at the Open Networking Summit (ONS 2014)

■ Recording is on YouTube (search for “Vahdat ONS 2014”)
● Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network

■ by Arjun Singh and many others, SIGCOMM 2015
● The Rise of Cloud Computing Systems

■ Jeff Dean’s talk from the SOSP ‘15 History Day Workshop

4

http://m.youtube.com/watch?v=n4gOZrUwWmc

What’s a cloud, and why?

5

Before “cloud”: large systems

6

Various companies built large systems, because they had to:

● Very resource-intensive interactive services, such as
○ Search (Google)
○ Electronic commerce (Amazon)
○ Email (AOL, HotMail, GMail, etc.)

● We learned how to make these scalable, reliable, and cheap:
○ “Scale out” (lots of cheap systems, networked together) instead of “Scale up”
○ Use low-reliability but cheap HW; gain reliability through distributed systems
○ Provide a high-level view of the resource pool, rather than “here are a lot of parts”

■ Via frameworks such as MapReduce/Hadoop, GFS/HBase, and many others
■ Design pattern: centralized master for control, thousands each of workers & clients
■ Framework maps computation/storage automatically onto a large cluster of machines

The genesis of cloud
● A few companies had mastered large scale-out systems
● Most other users were struggling with the basics:

○ power, cooling, machine repair, upgrades, patches, network plumbing, etc. ...
○ … none of which differentiates you from your competition
○ Jeff Bezos called this “undifferentiated heavy lifting”

● For many decades, people had a vision of “computing as a utility”
○ But mostly this was impossible to get off the ground, because it cost too much

● The “Aha!” moment: we can bring scale-out computing to everyone
○ Hide the messy stuff behind simplified interfaces
○ Don’t try to solve everyone’s problems at once
○ Ruthlessly focus on cost, by leveraging economies of scale

7

There’s more than one kind of cloud
● Infrastructure-as-a-Service (IaaS)

○ Provider offers virtual computers/containers, storage devices, and networks
○ Customer provides all the software, from the operating system to the applications
○ Examples: Amazon EC2, Google GCE

● Platform-as-a-Service (PaaS)
○ Provider manages high-level building blocks, makes them reliable and scalable
○ Customer writes code/scripts to glue these together (perhaps w/some IaaS)
○ Examples: Google Dataflow (big-data analytics-as-a-service)

● Software-as-a-Service (SaaS)
○ Provider creates and runs the applications
○ Users access applications via Web browser or apps
○ Examples: Salesforce.com (CRM), Gmail, Google Docs

● Many cloud “tenants” will use both IaaS and PaaS at the same time

8

Typical characteristics of a cloud system
● Most of the code and data lives within the provider’s infrastructure

○ And the users can be anywhere on the Internet
○ Some businesses use cloud processing to augment “on-premises” legacy systems

● The provider manages all of the physical infrastructure
○ Customer can usually ignore HW failures, SW upgrades, diesel generators, etc.

● You only pay for what you use
○ By the hour, by the Gbyte, by the query, etc.
○ And as computers get cheaper, you get to pay less

9

SLIs, SLOs, SLAs, and nines
Are you getting what you paid for?

● Service Level Indicator (SLI): a carefully-defined measurement
○ e.g.: round-trip latency between two VMs, or service uptime

● Service Level Objective (SLO): a goal, based on one or more SLIs
○ e.g.: 99.9% of RPCs have a round-trip latency below 500 microseconds
○ e.g.: my storage service is available for use 99.95% of the time, over one month

● Service Level Agreement (SLA): an SLO with consequences
○ e.g.: if you don’t meet the latency SLO, you have to refund double what I paid you

Availability SLA is often stated in terms of “nines”
● For example, “5 nines” means that the SLA guarantees 99.999% uptime
● … which is 5.26 minutes of downtime per year, or 864 milliseconds per day

10

Why customers like using the cloud
● Often cheaper than managing their own systems

○ Cloud providers can exploit economies of scale
○ Also, converts “capital expense” (CapEx) costs to “operating expense” (OpEx)

● If they need to grow quickly, they can
○ They can shrink quickly, too

● They can rapidly launch new applications
○ Through flexible resources and a growing set of PaaS components

But: some customers are nervous about the cloud:
● Can I trust the provider to be reliable and honest?
● Will the government get a warrant to snoop on my data?
● Can I predict how large my monthly bills will be?
● What if I want to switch to a different provider?

11

Virtual networks

12

What’s a “virtual network”?

13

A virtual network is to a real network as a virtual machine is to a real computer:

● In both cases, an abstraction that
○ preserves the important aspects from the user’s point of view
○ hides the boring details of the underlying “real” implementation
○ allows the provider to efficiently allocate resources among tenants
○ supports isolation (security and performance) between the tenants

● Typically, an IaaS tenant has a number of VMs connected by a virtual network
○ The provider maps this structure onto its underlying real network
○ This mapping is seldom 1:1

● PaaS tenants also usually have virtual networks, connecting to PaaS services

ToR

10.1.1/24
10.1.2/24

ToR

10.1.3/24

ToR

10.1.4/24

ToR

VNET:
5.4/16

VNET:
192.168.32/24

VNET:
10.1.124

Internal
Network

VMs and virtual networks in action

Host VMM

VM VM

Host VMM

VM VM

14

What do we need from virtual networks?
● Almost all IaaS and PaaS cloud tenants need to connect multiple things:

○ VMs [or “containers”, but for simplicity, I will ignore that in this talk]
○ PaaS services
○ Internet users
○ On-premises systems

● Cloud tenants want:
○ Predictable, high performance and availability
○ Flexible scaling and re-arrangement of their virtual networks

● A cloud provider needs to:
○ Enforce isolation between tenants, and protect them and itself against attacks
○ Meet its SLAs for network availability and performance
○ Collect billing-related information

15

Data center networks

16

Our datacenters are big ...

17

18

19

• Tens of thousands of servers, interconnected in clusters
• 10 years ago: Islands of bandwidth were a bottleneck for Google

■ Engineers struggled to optimize for bandwidth locality
■ “Stranded” compute/memory resources
■ Hindered app scaling

Grand challenge for datacenter networks

Datacenter
1 Gbps / machine
within rack

100 Mbps / machine
within small cluster

1 Mbps / machine
within datacenter

20

• Challenge: Flat bandwidth profile across all servers would
• Simplify job scheduling, by removing the need for locality
• Save significant resources, via better bin-packing
• Allow better application scaling

Grand challenge for datacenter networks

X Gbps / machine
flat bandwidth

Datacenter

21

• Traditional network architectures

• Cost prohibitive

• Could not keep up with our bandwidth demands

• Operational complexity of “box-centric” deployment

• Opportunity: A datacenter is a single administrative domain

• One organization designs, deploys, controls, operates the n/w

• ...And often also the servers

Motivation

22

Merchant silicon: General purpose,
commodity priced, off the shelf
switching components

Clos topologies: Accommodate low
radix switch chips to scale nearly
arbitrarily by adding stages

Centralized control / management

Three pillars that guided us

23

1T

10T

100T

1000T

‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13

Bi
se

ct
io

n
b/

w
 (b

ps
)

Year

2004 State of the art: 4 Post cluster network

Server
Rack

1

ToR
Server
Rack

2

ToR
Server
Rack

3

ToR
Server
Rack

4

ToR
Server
Rack

5

ToR
Server
Rack
512

ToR

Cluster
Router 1

Cluster
Router 2

Cluster
Router 3

Cluster
Router 4

2x10G

1G

+ Standard Network Configuration
- Scales to 2 Tbps (limited by the biggest router)
- Scale up: Forklift cluster when upgrading routers

(lo
g

 s
ca

le
)

24

DCN bandwidth growth demanded much more

25

Edge Aggregation
Block 1

Edge Aggregation
Block 2

Edge Aggregation
Block N

Spine Block
1

Spine Block
2

Spine Block
3

Spine Block
4

Spine Block
M

Server
racks
with ToR
switches

Basic pattern for Google’s Clos networks

26

Firehose 1.1

1T

10T

100T

1000T

‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 Year

4 Post

Saturn
Firehose 1.0

Watchtower
Jupiter (1.3P)

(lo
g

 s
ca

le
)

Bi
se

ct
io

n
b/

w
 (b

ps
)

27

Evolution over five generations

 40G to hosts; Scales out to 1.3 Pbps

Jupiter building blocks

28

• Topology and deployment
• Introducing our network to production
• Unmanageably high number of cables/fiber
• Cluster-external burst b/w demand

• Control and management
• Operating at huge scale
• Routing scalability / routing with massive multipath
• Interop with external vendor gear

• Performance and reliability
• Small on-chip buffers
• High availability from cheap/less reliable components

Challenges we faced in building our own solution

29

• Topology and deployment
• Introducing our network to production
• Unmanageably high number of cables/fiber
• Cluster-external burst b/w demand

• Control and management
• Operating at huge scale
• Routing scalability / routing with massive multipath
• Interop with external vendor gear

• Performance and reliability
• Small on-chip buffers
• High availability from cheap/less reliable components

I only have time for some of these -- see “Jupiter Rising” paper for others

Challenges we faced in building our own solution

30

Cable management

+ Cable bundling saves 40% TCO
+ 10x reduction in fiber runs to deploy31

Without
bundling:

With
bundling:

+ Connect externally via border routers
+ Massive external burst b/w

+ Enables (e.g.) cross-cluster MapReduce
+ No need to keep old “cluster routers”

32

Connecting to other networks

High reliability from cheap, low-reliability components?

33

● Exploit the redundancy in multi-path (Clos) network topologies
● Design topologies for diversity

○ e.g., don’t connect a “redundant” pair of links to the same two switch chips
● Implement only the features we need
● Learn, from our outages, how to build a reliable control plane
● Test the control plane in a virtualized testbed (at-scale testing is expensive!)

Wide-area networks

34

Wide Area Networks are different

35

● All kinds of clouds (IaaS/PaaS/SaaS) need WAN connectivity
● WANs face challenges that data-center networks do not:

○ WAN links are much more expensive
○ WAN links are more vulnerable

■ Backhoes, farmers, sharks, drunken hunters, spy agencies, etc.
○ WAN topologies are highly irregular

■ Constrained by geography
■ Some paths are much more expensive or vulnerable than others

○ WANs have lots of “edge” issues
■ Boundaries between routing domains
■ Boundaries between owners
■ Equipment often in remote and/or constrained locations (“POPs”)
■ Every link and every port might need a unique configuration

Google maintains two distinct WAN networks
● User-facing WAN:

○ Connects our datacenters to Internet peers (ISPs)
■ Must interface with a wide variety of equipment from many vendors
■ Connects to POPs all over the world

○ Connects our datacenters to our own world-wide edge caches (CDN)
○ Carries requests from users, and responses to them

● Datacenter-to-Datacenter WAN (“B4”):
○ Connects only between our datacenters
○ Used for distributed storage, copying large datasets, replication of user data, etc.

I’ll tell you about B4, because it’s the more technically interesting one.

36

B4’s world-wide scope

37

B4 design goals
B4’s design is motivated by somewhat different goals (vs. our other WAN):

● Large bandwidth demands, but tolerant of occasional reductions
● Relatively few sites
● We control all of the end-point applications and operating systems
● We prefer to lower costs, instead of using overprovisioning to achieve:

○ Low packet drop rates
○ Low rates of link failures

38

B4 design principles

39

Traditional approach B4 Approach

Traditional routers Simpler switches, + SDN controllers

Manage 1000s of individual boxes Manage the network as a whole

Distributed, non-deterministic routing
protocols

Logically-centralized control, with
traffic engineering

All packets are equally important Allocate resources based on
application-level priorities

TCP flows regulated by “fair share”
mechanisms

Measure demands, and shape flows,
at the endpoints

This allows us to run the network at 100% utilization
● 100% utilization? That’s crazy!

○ In a traditional network, this would lead to horrible packet loss
● But it’s really cost-effective, and so we made it work

40

How to live with 100% utilization
● Treat high-priority traffic and low-priority traffic differently

○ Hi-pri: strive for zero loss, and shortest-path (lowest-latency) routing
○ Lo-pri: applications must tolerate loss, latency, and variable capacity
○ Most of the traffic on B4 is lo-pri

41

Building the B4 network
● Our own SDN-controllable switches, built from merchant silicon

○ Far fewer features than commercial routers -- so much cheaper
■ Smaller buffers, smaller routing tables, less HW-based fault tolerance

○ Shortest-path routing for hi-pri traffic
○ Tunnelled, traffic-engineered routing for lo-pri traffic

● SDN controllers that carefully manage the traffic-engineered tunnels
○ See SIGCOMM 2013 paper for details on the TE algorithms and protocols

● “Bandwidth Enforcer” to shape traffic flows at all end hosts
○ See SIGCOMM 2015 paper for more details on BwE

● Specialized applications that can tolerate high loss rates and latency
○ and that can adapt transmission rates to variable bandwidth capacity

42

B4 hardware

● Built from merchant silicon
○ 100s of ports of nonblocking 10GE

● OpenFlow support

● Open-source routing stacks for BGP, ISIS

● Multiple chassis per site
○ Fault tolerance through redundancy
○ Scales to multiple Tbps

43

A word from our sponsor ...

44

Short links for jobs
Internships:
● PhD SW Eng students: deadline Feb 7 2020
● Undergrad/MS SW Eng: deadline Dec 13 2019
● Hardware Eng: deadline January 31 2020
● Freshmen/soph “STEP”: deadline was Nov 1
● Use google.com/students to find out more

Full-time jobs:
● g.co/research/networks for our team specifically
● careers.google.com more generally

If you apply: please let me know (mogul@google.com) so I can keep track of you

Questions? stanfordstudents@google.com

http://google.com/students
http://g.co/research/networks
http://careers.google.com
mailto:mogul@google.com

