
CS144, Stanford University

CS144: An Introduction to Computer Networks

Packet Switching

What if some packets are more
important than others?

CS144, Stanford University

By default, switches and routers use
FIFO (aka FCFS) queues

2

Buffer size, B

Departing
packets

Service Rate, RPackets arriving
to different

ingress ports

CS144, Stanford University

By default, switches and routers use
FIFO (aka FCFS) queues

3

Buffer size, B

Departing
packets

Service Rate, RPackets arriving
to different

ingress ports

CS144, Stanford University

Some packets are more important

For example:
1. Control packets that keeps the network working

(e.g. packets carrying routing table updates)

2. Traffic from a particular user (e.g. a customer paying more)

3. Traffic belonging to an application (e.g. Zoom)

4. Traffic to/from specific IP addresses (e.g. emergency services)

5. Traffic that is time sensitive (e.g. clock updates)

4

CS144, Stanford University

Flows
When talking about priorities, it’s convenient to talk about a “flow” of
packets that all share a common set of attributes. For example:

1. The flow of packets all belonging to the same TCP connection
Identified by the tuple: TCP port numbers, IP addresses, TCP protocol

2. The flow of packets all destined to Stanford
Identified by a destination IP address belonging to prefix 171.64/16

3. The flow of packets all coming from Google
Identified by a source IP address belonging to the set of prefixes Google owns.

4. The flow of web packets using the http protocol
Identified by packets with TCP port number = 80

5. The flow of packets belonging to gold-service customers
Typically identified by marking the IP TOS (type of service) field

5

CS144, Stanford University

Outline of what’s coming up next…

1. How to give “strict priority” to some flows

2. How to give “weighted priorities” to some flows

3. How to give “rate guarantees” to some flows

4. How to guarantee the end-to-end latency of a packet
across a network

6

CS144, Stanford University 7

Strict Priorities
High priority flows

Low priority flows

CS144, Stanford University 8

Strict Priorities
High priority flows

Low priority flows

“Strict priorities” means a queue is only served
when all the higher priority queues are empty

CS144, Stanford University

Strict Priorities: Things to bear in mind
1. Strict priorities can be used with any number of queues.

2. Strict priorities means a queue is only served when all the higher
priority queues are empty.

3. Highest priority flows “see” a network with no lower priority
traffic.

4. Higher priority flows can permanently block lower priority flows.
Try to limit the amount of high priority traffic.

5. Not likely to work well if you can’t control the amount of high
priority traffic.

6. Or if you really want weighted (instead of strict) priority.

9

CS144, Stanford University

How do I give weighted
(instead of strict) priority?

10

CS144, Stanford University 11

CS144, Stanford University

Trying to treat flows equally

12

CS144, Stanford University

Trying to treat flows equally

13

While each flow gets to send at the same packet rate,
the data rate is far from equal.

CS144, Stanford University

Scheduling flows bit-by-bit

14

CS144, Stanford University

Scheduling flows bit-by-bit

15

Now each flow gets to send at the same data rate,
but we no longer have “packet switching”.

CS144, Stanford University

Can we combine the best of both?

i.e. packet switching, but with bit-by-bit accounting?

16

CS144, Stanford University

2 1

Fair Queueing

17

Packets are sent in the order they would complete in the bit-by-bit scheme.

23

23456

1

1

12345 12

342 1

Does this give fair (i.e. equal) share of the data rate?

5

CS144, Stanford University

Yes!

1. It can be proved that the departure time of a packet with Fair
Queueing is no more than 𝐿𝑚𝑎𝑥/𝑅 seconds later than if it was
scheduled bit-by-bit, where 𝐿𝑚𝑎𝑥 is the maximum length packet
and 𝑅 is the data rate of the egress link.

2. In the limit, the two flows receive equal share of the data rate.

3. The result extends to any number of flows sharing a link.1

18
[1] “Analysis and Simulation of a Fair Queueing Algorithm” Demers, Keshav, Shenker. 1990.

CS144, Stanford University

What if we want to give a different
share of the link to each flow?

i.e., a weighted fair share.

19

CS144, Stanford University

Weighted Fair Queueing

20

1

As before, packets are sent in the order they would
complete in the bit-by-bit scheme.

23

23456

1

1 2 2 1

3/4

1/4

12 123

3

CS144, Stanford University

Weighted Fair Queueing (WFQ)

For any number of flows,
and any mix of packet sizes:

1. Determine the departure
time for each packet using
the weighted bit-by-bit
scheme.

2. Forward the packets in
order of increasing
departure time.

21

a1

ai

aN

∑ai = 1
i

R

Flow i is guaranteed to receive at least rate aiR

CS144, Stanford University

Weighted Fair Queueing (WFQ)

22

a1

ai

aN

∑ai = 1
i

R

Flow i is guaranteed to receive at least rate aiR

Classify packets
into flows

Packets arriving
at different

ingress ports

Packet
scheduler

CS144, Stanford University

Summary

1. FIFO queues are a free for all: No priorities, no guaranteed rates.

2. Strict priorities: High priority traffic “sees” a network with no
low priority traffic. Useful if we have limited amounts of high
priority traffic.

3. Weighted Fair Queueing (WFQ) lets us give each flow a
guaranteed service rate, by scheduling them in order of their bit-
by-bit finishing times.

23

CS144, Stanford University

Outline of what’s coming up next…

1. How to give “strict priority” to some flows

2. How to give “weighted priorities” to some flows

3. How to give “rate guarantees” to some flows

4. How to guarantee the end-to-end latency of a packet
across a network

24

CS144, Stanford University

Delay guarantees: Intuition

25

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =෍
𝑖

𝑝

𝑟𝑖
+
𝑙𝑖
𝑐
+ 𝑄𝑖(𝑡)End-to-end delay,

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

The following values are fixed (or under our control): p, c, li and ri.
If we know the upper bound of 𝑄1 𝑡 , 𝑄2 𝑡 , and 𝑄3 𝑡 , then we

know the upper bound of the end-to-end delay.

CS144, Stanford University 26

r

Upper bound on Q 𝑡

b

𝑄 𝑡 ≤
𝑏

𝑟

Example: If a packet arrives to a FIFO queue of size 1 million bits, and the queue is served

at 1Gb/s, then the packet is guaranteed to depart within ൗ106

109 = 1ms.

CS144, Stanford University

Delay guarantees: Intuition

27

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =෍

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+ ෍

𝑖=1

3

𝑄𝑖 𝑡End-to-end delay for a single packet,

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

𝑏1 𝑏2 𝑏3

≤෍

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+ ෍

𝑖=1

3
𝑏𝑖
𝑟𝑖

CS144, Stanford University

Why this is only an intuition…

1. Doesn’t tell us what happens when 𝑟2 < 𝑟1. Will packets be dropped?

2. Treats all packets sharing a queue as one big flow; it doesn’t give a
different end-to-end delay to each flow.

Q: How can we give an upper bound on delay for packets in each flow?

28

CS144, Stanford University

Weighted Fair Queueing (WFQ)

29

a1

ai

aN

R

Flow i is guaranteed to receive at least rate aiR

Classify packets
into flows

Packets arriving
to different

ingress ports

Packet
scheduler

෍

𝑖

𝑎𝑖 ≤ 1

CS144, Stanford University

Weighted Fair Queueing (WFQ)

30

a1

ai

aN

R

Flow i is guaranteed to receive at least rate aiR

Classify packets
into flows

Packets arriving
to different

ingress ports

Packet
scheduler

bi

≤
𝑏𝑖
𝑎𝑖𝑅

delay

෍

𝑖

𝑎𝑖 ≤ 1

CS144, Stanford University

Bounding end-to-end delay

31

CS144, Stanford University

Bounding end-to-end delay

32

aR
b

aR
b

aR
b

1. Allocate a queue of size b for this flow
2. Assign a WFQ service rate of aR

The end-to-end delay of a single packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

aR

l l

l l

CS144, Stanford University

What if two of the flow’s enter the
network back-to-back? (A “burst”)

1. If the packets are far apart, then the queues drain the first packet
before the second one arrives. All is good, and the delay equation
holds.

2. If the packets are close together in a “burst”, then they can arrive
faster than aR and the queue might overflow, dropping packets.

3. This might be OK in some cases. But if we want to bound the end-to-
end delay of all packets, then we need to deal with bursts. How?

33

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

Token bucket

size, s

Packets In Packets Out

End-host sends packet if and only if
there are tokens in the bucket

Tokens at

constant rate, r

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

Tokens at

constant rate, r

Token bucket

size, s

Packets In Packets Out

Send packet if and only if we
have tokens in the bucket

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

Tokens at

constant rate, r

Token bucket

size, s

Packets In Packets Out

Send packet if and only if we
have tokens in the bucket

CS144, Stanford University

The leaky bucket regulator

Number of bits that can be sent in any period
of length t is bounded by: 𝜎 + 𝜌𝑡

It is also called a “(𝜎, 𝜌) regulator”

𝐷(𝑡)
Output from regulator

r

s

time

Cumulative

bits

𝐴(𝑡)
Input to regulator

r

s

Packets In

𝐴(𝑡)
Packets Out

𝐷(𝑡)

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

r

s

aR
b

If 𝑎𝑅 > 𝜌 and 𝑏 > 𝜎 then delay through the first router for all packets in the flow ≤
𝑏

aR

aR
b

Cool theorem: If arrivals to the queue are 𝜎, 𝜌 -constrained,
and if the queue is served at rate 𝑎𝑅 > 𝜌 and 𝑏 > 𝜎,
then departures are also 𝜎, 𝜌 -constrained. Which means
arrivals to the next router are also 𝜎, 𝜌 -constrained.

CS144, Stanford University

Putting it all together

r

s

aR
b

If 𝑎𝑅 > 𝜌 and 𝑏 > 𝜎 then the end-to-end delay of every packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

aR

l l

l

aR
b

aR
b

l

CS144, Stanford University

In other words

40

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =෍

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+ ෍

𝑖=1

3

𝑄𝑖 𝑡If we set 𝑏𝑖 > 𝜎, and 𝑎𝑖𝑅 > 𝜌 then

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

≤෍

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+
3𝜎

𝜌

Leaky bucket
(𝜎, 𝜌) regulator

a1R
b1

a2R
b2

a3R
b3

CS144, Stanford University

A Worked Example
Q: In the network below, we want to give an application flow a rate of at least 10Mb/s and
an end to end delay of at most 4.7ms for 1,000 Byte packets. What values of 𝜎 and 𝜌
should we use for the leaky bucket regulator? And what service rate and buffer size do we
need in the routers? (Assume speed of propagation, 𝑐 = 2 × 108m/s).

A B10km, 1Gb/s 100km, 100Mb/s 10km, 1Gb/s

A: The fixed component of delay is Τ(120𝑘𝑚 𝑐) + 8,000𝑏𝑖𝑡𝑠(
1

109
+

1

100×106
+

1

109
) = 0.7ms, leaving

4ms delay for the queues in the routers. Let’s apportion 2ms delay to each router, which means the
queue in each router need be no larger than 2𝑚𝑠 × 10Mb/s = 20,000bits (or 2500bytes).
Therefore, the leaky bucket regulator in Host A should have 𝜌 = 10𝑀𝑏/𝑠 and 𝜎 ≤ 20,000𝑏𝑖𝑡𝑠.
WFQ should be set at each router so that 𝑎𝑖𝑅 ≥ 10𝑀𝑏/𝑠 and the flow’s queue should have a
capacity of at least 2500bytes.

Leaky bucket (𝜎, 𝜌) regulator

CS144, Stanford University

In practice
While lots of network equipment implements WFQ (even your
WiFi router at home might!), public networks don’t offer a
service to their customers to guarantee end-to-end delay.

Why?
- It requires coordination of all the routers from end to end.

IETF RFC 4495 “RSVP” was designed to help coordinate.

- In most networks, a combination of over-provisioning and priorities
work well enough.

- However, rate guarantees are commonly used by network owners
to control how flows share network capacity.

42

CS144, Stanford University

Summary

1. If we know the size of a queue and the rate at which it is
served, then we can bound the delay through it.

2. WFQ allows us to pick the rate at which a queue is served.

3. With the two observations above, if no packets are dropped,
we can control end-to-end delay.

4. To prevent drops, we can use a leaky bucket regulator to
control the “burstiness” of flows entering the network.

43

CS144, Stanford University

CS144: An Introduction to Computer Networks

Packet Switching

How a packet switch works

CS144, Stanford University

Outline

1. What does a packet switch look like?

2. What does a packet switch do?

- Ethernet switch

- Internet router

3. How address lookup works

- Ethernet switch

- Internet router

45

CS144, Stanford University

Generic Packet Switch

Lookup
Address

Data H

Destination
Address

Forwarding
Table

Egress link

Queue
Packet

Buffer
Memory

Update
Header

CS144, Stanford University

Generic Packet Switch
Lookup
Address

Update
Header

Forwarding
Table

Lookup
Address

Update
Header

Forwarding
Table

Lookup
Address

Update
Header

Forwarding
Table

Queue
Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Data H

Data H

Data H

CS144, Stanford University 48

Packet processing by an Ethernet Switch

1. Examine the header of each arriving frame.

2. If the Ethernet DA is in the forwarding table, forward the frame to the correct
output port(s).

3. If the Ethernet DA is not in the table, broadcast the frame to all ports (except
the one through which the frame arrived).

4. Entries in the table are learned by examining the Ethernet SA of arriving
packets.

CS144, Stanford University 49

Packet processing by an Internet Router
1. If the Ethernet DA of the arriving frame belongs to the router, accept the frame.

Else drop it.

2. Examine the IP version number and length of the datagram.

3. Decrement the TTL, update the IP header checksum.

4. Check to see if TTL == 0.

5. If the IP DA is in the forwarding table, forward to the correct egress port(s) for
the next hop.

6. Find the Ethernet DA for the next hop router.

7. Create a new Ethernet frame and send it.

CS144, Stanford University 50

Basic Operations

1. Lookup Address: How is the address looked up in
the forwarding table?

2. Switching: How is the packet sent to the correct
output port?

CS144, Stanford University

Lookup Address: Ethernet
Ethernet addresses (in a switch)

Methods

- Store addresses in hash table (maybe a multi-way hash)

- Lookup exact match in hash table

51

Match Action

Ethernet DA = 0xA8B72340E678 Forward to port 7

Ethernet DA = 0xB3D22571053B Forward to port 3

… …

CS144, Stanford University

Lookup Address: IPv4

IP addresses (in a router)

Lookup is a longest prefix match, not an exact match

52

Match Action

IP DA = 127.43.57.99 Forward to 56.99.32.16

IP DA = 123.66.44.X Forward to 22.45.21.126

IP DA = 76.9.X.X Forward to 56.99.32.16

… …

CS144, Stanford University

Longest prefix match

128.9.16.0/21 128.9.172.0/21

128.9.176.0/24

0 232-1

128.9.0.0/16
142.12.0.0/1965.0.0.0/8

128.9.16.1465.14.24.120

Routing lookup: Find the longest matching prefix (aka the most specific
route) among all prefixes that match the destination address.

CS144, Stanford University

Longest prefix match lookup
Binary tries (“retrieval”)

0 1
Entry Prefix

a 00001

b 00010

c 00011

d 001

e 0101

f 011

g 100

h 1010

i 1100

j 11110000

e

f g

h i

j

d

a b c

CS144, Stanford University

Longest prefix match lookup
Binary tries (“retrieval”)

0 1
Entry Prefix

a 00001

b 00010

c 00011

d 001

e 0101

f 011

g 100

h 1010

i 1100

j 11110000

k 1111

e

f g

h i

j

d

a b c

k

CS144, Stanford University

Longest prefix match lookup
Ternary Content Addressable Memory (TCAM)

Entry Prefix

a 00001

b 00010

c 00011

d 001

e 0101

f 011

g 100

h 1010

i 1100

j 11110000

Entry Prefix

a 00001XXX
11111000

b 00010XXX
11111000

c 00011XXX
11111000

d 001XXXXX
11100000

e 0101XXXX
11110000

… …

j 11110000
11111111

Binary value
+ Mask

Associative lookup: Compare address
against every entry at the same time.

CS144, Stanford University

Lookup Address: Generic

Generic or abstract lookups: <Match, Action>

• Generalization of lookups and forwarding action in switches,
routers, firewalls, etc.

• This led to an abstraction for controlling switches using
<match,action>rules, called OpenFlow

57

Match Action

IP DA = X Forward to port 7

Eth DA = Y AND IP DA = Z Drop packet

CS144, Stanford University

Summary

Packet switches perform two basic operations:

- Lookup addresses in a forwarding table

- Switching to the correct egress port

At a high level, Ethernet switches and Internet routers perform
similar operations

Address lookup is different in Ethernet switches
and IP routers.

58

